aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--backend/api/api/Controllers/FileController.cs103
-rw-r--r--backend/api/api/Controllers/PredictorController.cs10
-rw-r--r--backend/api/api/Models/FileModel.cs1
-rw-r--r--backend/api/api/Models/PredictorColumns.cs8
-rw-r--r--backend/api/api/Services/PredictorService.cs2
-rw-r--r--backend/api/api/Services/UserService.cs2
-rw-r--r--backend/microservice/__pycache__/mlservice.cpython-310.pycbin5009 -> 7405 bytes
-rw-r--r--backend/microservice/api.py2
-rw-r--r--backend/microservice/api/controller.py22
-rw-r--r--backend/microservice/api/ml_service.py363
-rw-r--r--backend/microservice/api/newmlservice.py424
-rw-r--r--backend/microservice/mlservice.py32
-rw-r--r--frontend/angular.json13
-rw-r--r--frontend/package-lock.json27
-rw-r--r--frontend/package.json2
-rw-r--r--frontend/src/app/Shared.ts25
-rw-r--r--frontend/src/app/_data/Model.ts12
-rw-r--r--frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.css0
-rw-r--r--frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.html41
-rw-r--r--frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.spec.ts25
-rw-r--r--frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.ts78
-rw-r--r--frontend/src/app/_elements/annvisual/annvisual.component.html4
-rw-r--r--frontend/src/app/_elements/dataset-load/dataset-load.component.css15
-rw-r--r--frontend/src/app/_elements/dataset-load/dataset-load.component.html70
-rw-r--r--frontend/src/app/_elements/dataset-load/dataset-load.component.ts121
-rw-r--r--frontend/src/app/_elements/item-model/item-model.component.html6
-rw-r--r--frontend/src/app/_elements/item-predictor/item-predictor.component.ts3
-rw-r--r--frontend/src/app/_elements/navbar/navbar.component.ts4
-rw-r--r--frontend/src/app/_modals/alert-dialog/alert-dialog.component.css0
-rw-r--r--frontend/src/app/_modals/alert-dialog/alert-dialog.component.html7
-rw-r--r--frontend/src/app/_modals/alert-dialog/alert-dialog.component.spec.ts25
-rw-r--r--frontend/src/app/_modals/alert-dialog/alert-dialog.component.ts28
-rw-r--r--frontend/src/app/_modals/login-modal/login-modal.component.html2
-rw-r--r--frontend/src/app/_modals/login-modal/login-modal.component.ts5
-rw-r--r--frontend/src/app/_modals/register-modal/register-modal.component.ts12
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.css9
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.html36
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.ts58
-rw-r--r--frontend/src/app/_pages/browse-predictors/browse-predictors.component.html4
-rw-r--r--frontend/src/app/_pages/browse-predictors/browse-predictors.component.ts2
-rw-r--r--frontend/src/app/_pages/filter-datasets/filter-datasets.component.ts8
-rw-r--r--frontend/src/app/_pages/my-datasets/my-datasets.component.html42
-rw-r--r--frontend/src/app/_pages/my-datasets/my-datasets.component.ts49
-rw-r--r--frontend/src/app/_pages/my-models/my-models.component.html22
-rw-r--r--frontend/src/app/_pages/my-models/my-models.component.ts3
-rw-r--r--frontend/src/app/_pages/my-predictors/my-predictors.component.html2
-rw-r--r--frontend/src/app/_pages/my-predictors/my-predictors.component.ts37
-rw-r--r--frontend/src/app/_pages/predict/predict.component.css3
-rw-r--r--frontend/src/app/_pages/predict/predict.component.html45
-rw-r--r--frontend/src/app/_pages/predict/predict.component.ts16
-rw-r--r--frontend/src/app/_pages/profile/profile.component.html7
-rw-r--r--frontend/src/app/_pages/profile/profile.component.ts125
-rw-r--r--frontend/src/app/_services/datasets.service.ts8
-rw-r--r--frontend/src/app/_services/predictors.service.ts11
-rw-r--r--frontend/src/app/app.module.ts12
-rw-r--r--frontend/src/app/material.module.ts7
56 files changed, 1687 insertions, 313 deletions
diff --git a/backend/api/api/Controllers/FileController.cs b/backend/api/api/Controllers/FileController.cs
index 0fe8415b..d29c5676 100644
--- a/backend/api/api/Controllers/FileController.cs
+++ b/backend/api/api/Controllers/FileController.cs
@@ -4,6 +4,7 @@ using api.Services;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Net.Http.Headers;
+
namespace api.Controllers
{
[Route("api/[controller]")]
@@ -11,6 +12,7 @@ namespace api.Controllers
public class FileController : ControllerBase
{
private string[] permittedExtensions = { ".csv" };
+ private string[] permittedExtensionsH5 = { ".h5" };//niz da bi dodali h4 itd
private readonly IConfiguration _configuration;
private IJwtToken _token;
private IFileService _fileservice;
@@ -22,6 +24,77 @@ namespace api.Controllers
}
+ [HttpPost("h5")]
+ [Authorize(Roles = "User,Guest")]
+ public async Task<ActionResult<string>> H5Upload([FromForm] IFormFile file)
+ {
+
+ //get username from jwtToken
+ string uploaderId;
+ string folderName;
+ var header = Request.Headers[HeaderNames.Authorization];
+ if (AuthenticationHeaderValue.TryParse(header, out var headerValue))
+ {
+
+ var scheme = headerValue.Scheme;
+ var parameter = headerValue.Parameter;
+ uploaderId = _token.TokenToId(parameter);
+ if (uploaderId == null)
+ return null;
+ }
+ else
+ return BadRequest();
+ if (uploaderId == "")
+ {
+ folderName = "TempFiles";
+ }
+ else
+ {
+ folderName = "UploadedFiles";
+ }
+
+
+ //Check filetype
+ var filename = file.FileName;
+ var ext = Path.GetExtension(filename).ToLowerInvariant();
+ var name = Path.GetFileNameWithoutExtension(filename).ToLowerInvariant();
+ if (string.IsNullOrEmpty(ext) || !permittedExtensionsH5.Contains(ext))
+ {
+ return BadRequest("Wrong file type");
+ }
+ var folderPath = Path.Combine(Directory.GetCurrentDirectory(), folderName, uploaderId);
+ //Check Directory
+ if (!Directory.Exists(folderPath))
+ {
+ Directory.CreateDirectory(folderPath);
+ }
+ //Index file if same filename
+ var fullPath = Path.Combine(folderPath, filename);
+ int i = 0;
+
+ while (System.IO.File.Exists(fullPath))
+ {
+ i++;
+ fullPath = Path.Combine(folderPath, name + i.ToString() + ext);
+ }
+
+
+ //Write file
+ using (var stream = new FileStream(fullPath, FileMode.Create))
+ {
+ await file.CopyToAsync(stream);
+ }
+ FileModel fileModel = new FileModel();
+ fileModel.type = "h5";
+ fileModel.path = fullPath;
+ fileModel.uploaderId = uploaderId;
+ fileModel.date = DateTime.Now.ToUniversalTime();
+ fileModel = _fileservice.Create(fileModel);
+
+
+ return Ok(fileModel);
+ }
+
[HttpPost("Csv")]
[Authorize(Roles = "User,Guest")]
@@ -81,6 +154,7 @@ namespace api.Controllers
await file.CopyToAsync(stream);
}
FileModel fileModel= new FileModel();
+ fileModel.type = "csv";
fileModel.path=fullPath;
fileModel.uploaderId= uploaderId;
fileModel.date = DateTime.Now.ToUniversalTime();
@@ -90,6 +164,35 @@ namespace api.Controllers
return Ok(fileModel);
}
+
+ //msm generalno moze da se koristi Download samo
+ [HttpGet("downloadh5")]
+ [Authorize(Roles = "User,Guest")]
+ public async Task<ActionResult> DownloadH5(string id)
+ {
+ //Get Username
+ string uploaderId;
+ var header = Request.Headers[HeaderNames.Authorization];
+ if (AuthenticationHeaderValue.TryParse(header, out var headerValue))
+ {
+
+ var scheme = headerValue.Scheme;
+ var parameter = headerValue.Parameter;
+ uploaderId = _token.TokenToId(parameter);
+ if (uploaderId == null)
+ return null;
+ }
+ else
+ return BadRequest();
+
+ string filePath = _fileservice.GetFilePath(id, uploaderId);
+ if (filePath == null)
+ return BadRequest();
+
+ return File(System.IO.File.ReadAllBytes(filePath), "application/octet-stream", Path.GetFileName(filePath));
+
+ }
+
[HttpGet("Download")]
[Authorize(Roles = "User,Guest")]
public async Task<ActionResult> DownloadFile(string id)
diff --git a/backend/api/api/Controllers/PredictorController.cs b/backend/api/api/Controllers/PredictorController.cs
index cdc14632..161271e2 100644
--- a/backend/api/api/Controllers/PredictorController.cs
+++ b/backend/api/api/Controllers/PredictorController.cs
@@ -77,7 +77,7 @@ namespace api.Controllers
// GET api/<PredictorController>/getpredictor/{name}
[HttpGet("getpredictor/{id}")]
- [Authorize(Roles = "User")]
+ [Authorize(Roles = "User,Guest")]
public ActionResult<Predictor> GetPredictor(string id)
{
string username;
@@ -188,8 +188,8 @@ namespace api.Controllers
// POST api/<PredictorController>/usepredictor {predictor,inputs}
[HttpPost("usepredictor/{id}")]
- [Authorize(Roles = "User")]
- public ActionResult UsePredictor(String id, [FromBody] String[] inputs)
+ [Authorize(Roles = "User,Guest")]
+ public ActionResult UsePredictor(String id, [FromBody] PredictorColumns[] inputs)
{
string username;
@@ -207,8 +207,8 @@ namespace api.Controllers
Predictor predictor = _predictorService.GetPredictor(username, id);
- foreach(String i in inputs)
- Debug.WriteLine(i);
+ foreach(PredictorColumns i in inputs)
+ Debug.WriteLine(i.value.ToString());
return NoContent();
}
diff --git a/backend/api/api/Models/FileModel.cs b/backend/api/api/Models/FileModel.cs
index 1043309d..47b12110 100644
--- a/backend/api/api/Models/FileModel.cs
+++ b/backend/api/api/Models/FileModel.cs
@@ -8,6 +8,7 @@ namespace api.Models
[BsonId]
[BsonRepresentation(BsonType.ObjectId)]
public string _id { get; set; }
+ public string type { get; set; }
public string uploaderId { get; set; }
public string path { get; set; }
[BsonDateTimeOptions(Kind = DateTimeKind.Utc)]
diff --git a/backend/api/api/Models/PredictorColumns.cs b/backend/api/api/Models/PredictorColumns.cs
new file mode 100644
index 00000000..82f3e979
--- /dev/null
+++ b/backend/api/api/Models/PredictorColumns.cs
@@ -0,0 +1,8 @@
+namespace api.Models
+{
+ public class PredictorColumns
+ {
+ public String name { get; set; }
+ public String value { get; set; }
+ }
+}
diff --git a/backend/api/api/Services/PredictorService.cs b/backend/api/api/Services/PredictorService.cs
index 01bc8359..b15255ac 100644
--- a/backend/api/api/Services/PredictorService.cs
+++ b/backend/api/api/Services/PredictorService.cs
@@ -42,7 +42,7 @@ namespace api.Services
}
public Predictor GetPredictor(string username, string id)
{
- return _predictor.Find(predictor => predictor.username == username && predictor._id == id).FirstOrDefault();
+ return _predictor.Find(predictor => predictor._id == id && (predictor.username == username || predictor.isPublic == true)).FirstOrDefault();
}
//last private models
diff --git a/backend/api/api/Services/UserService.cs b/backend/api/api/Services/UserService.cs
index 7ec6f4b2..7fc4bdb1 100644
--- a/backend/api/api/Services/UserService.cs
+++ b/backend/api/api/Services/UserService.cs
@@ -50,7 +50,7 @@ namespace api.Services
//username koji postoji u bazi
using (var session = _client.StartSession())
{
-
+ if(username!=user.Username)
if(_users.Find(u => u.Username == user.Username).FirstOrDefault()!=null)
{
return false;
diff --git a/backend/microservice/__pycache__/mlservice.cpython-310.pyc b/backend/microservice/__pycache__/mlservice.cpython-310.pyc
index c079459a..ac93f3db 100644
--- a/backend/microservice/__pycache__/mlservice.cpython-310.pyc
+++ b/backend/microservice/__pycache__/mlservice.cpython-310.pyc
Binary files differ
diff --git a/backend/microservice/api.py b/backend/microservice/api.py
index 4768f34c..9a28b159 100644
--- a/backend/microservice/api.py
+++ b/backend/microservice/api.py
@@ -9,7 +9,7 @@ import csv
import json
import mlservice
import h5py
-from mlservice2 import unositok
+from mlservice import unositok
app = flask.Flask(__name__)
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 059af317..1b17f727 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,7 +1,7 @@
import flask
from flask import request, jsonify
import ml_socket
-import ml_service
+import newmlservice
import tensorflow as tf
import pandas as pd
@@ -25,7 +25,7 @@ def train():
f = request.json["dataset"]
dataset = pd.read_csv(f)
#
- result = ml_service.train(dataset, request.json["model"], train_callback)
+ result = newmlservice.train(dataset, request.json["model"], train_callback)
print(result)
return jsonify(result)
@@ -34,10 +34,22 @@ def predict():
f = request.json['filepath']
dataset = pd.read_csv(f)
m = request.json['modelpath']
- #model = tf.keras.models.load_model(m)
- #
- #model.predict?
+ model = tf.keras.models.load_model(m)
+ print("********************************model loaded*******************************")
+ newmlservice.manageH5(dataset,request.json['model'],model)
+ return "done"
+
+@app.route('/preprocess',methods=['POST'])
+def returnColumnsInfo():
+ f=request.json['filepathcolinfo']
+ dataset=pd.read_csv(f)
+
+ result=newmlservice.returnColumnsInfo(dataset)
+
+ return jsonify(result)
+
+
print("App loaded.")
ml_socket.start()
app.run() \ No newline at end of file
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py
index ea562212..0aed3dc9 100644
--- a/backend/microservice/api/ml_service.py
+++ b/backend/microservice/api/ml_service.py
@@ -1,4 +1,8 @@
+from cmath import nan
+from enum import unique
+from itertools import count
import pandas as pd
+from sklearn import datasets
import tensorflow as tf
import keras
import numpy as np
@@ -11,12 +15,67 @@ from typing_extensions import Self
from copyreg import constructor
from flask import request, jsonify, render_template
from sklearn.preprocessing import LabelEncoder
+from sklearn.preprocessing import OrdinalEncoder
+import category_encoders as ce
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from dataclasses import dataclass
+import statistics as s
+from sklearn.metrics import roc_auc_score
+
+def returnColumnsInfo(dataset):
+ dict=[]
+ datafront=dataset.copy()
+ svekolone=datafront.columns
+ kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ allNullCols=0
+ for kolona in svekolone:
+ if(kolona in kategorijskekolone):
+ uniquevalues=datafront[kolona].unique()
+ mean=0
+ median=0
+ min=0
+ max=0
+ nullCount=datafront[kolona].isnull().sum()
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':False,
+ 'uniqueValues':uniquevalues.tolist(),
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
+ }
+ dict.append(frontreturn)
+ else:
+ mean=datafront[kolona].mean()
+ median=s.median(datafront[kolona])
+ nullCount=datafront[kolona].isnull().sum()
+ min=min(datafront[kolona])
+ max=max(datafront[kolona])
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':1,
+ 'uniqueValues':[],
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
+ }
+ dict.append(frontreturn)
+ NullRows = datafront[datafront.isnull().any(axis=1)]
+ #print(NullRows)
+ #print(len(NullRows))
+ allNullRows=len(NullRows)
+
+ return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows}
@dataclass
-class TrainingResult:
+class TrainingResultClassification:
accuracy: float
precision: float
recall: float
@@ -26,18 +85,29 @@ class TrainingResult:
tp: float
specificity: float
f1: float
+ logloss: float
+ fpr: float
+ tpr: float
+ metrics: dict
+'''
+@datasets
+class TrainingResultRegression:
mse: float
mae: float
mape: float
rmse: float
- fpr: float
- tpr: float
+@dataclass
+class TrainingResult:
+ metrics: dict
+'''
def train(dataset, params, callback):
problem_type = params["type"]
data = pd.DataFrame()
for col in params["inputColumns"]:
data[col]=dataset[col]
+
+ print(data.head())
output_column = params["columnToPredict"]
data[output_column] = dataset[output_column]
#
@@ -66,6 +136,7 @@ def train(dataset, params, callback):
data.pop(col)
#
# Enkodiranje
+ # https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
#
encoding=params["encoding"]
if(encoding=='label'):
@@ -79,6 +150,34 @@ def train(dataset, params, callback):
if(data[col].dtype==np.object_):
category_columns.append(col)
data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
#
# Input - output
#
@@ -88,71 +187,271 @@ def train(dataset, params, callback):
x_columns.append(col)
x = data[x_columns].values
y = data[output_column].values
+ print(x_columns)
+ print(x)
#
# Podela na test i trening skupove
#
test=params["randomTestSetDistribution"]
randomOrder = params["randomOrder"]
if(randomOrder):
- random=50
+ random=123
else:
random=0
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=0)
#
# Skaliranje vrednosti
#
+ '''
scaler=StandardScaler()
scaler.fit(x_train)
x_test=scaler.transform(x_test)
x_train=scaler.transform(x_train)
+ '''
+
#
# Treniranje modela
#
- classifier=tf.keras.Sequential()
+ #
hidden_layer_neurons = params["hiddenLayerNeurons"]
- for func in params["hiddenLayerActivationFunctions"]:
- classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=func))
- output_func = params["outputLayerActivationFunction"]
- classifier.add(tf.keras.layers.Dense(units=1,activation=output_func))
- optimizer = params["optimizer"]
- metrics=params['metrics']
- loss_func=params["lossFunction"]
- classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics)
- batch_size = params["batchSize"]
- epochs = params["epochs"]
- history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test), validation_split=0.2) # TODO params["validationSplit"]
+
+ if(problem_type=='multi-klasifikacioni'):
+ func=params['hiddenLayerActivationFunctions']
+ output_func = params["outputLayerActivationFunction"]
+ optimizer = params["optimizer"]
+ metrics=params['metrics']
+ loss_func=params["lossFunction"]
+ batch_size = params["batchSize"]
+ epochs = params["epochs"]
+ inputDim = len(data.columns) - 1
+ '''
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=len(data.columns),input_dim=inputDim))#input layer
+
+ for f in func:#hidden layers
+ classifier.add(tf.keras.layers.Dense(hidden_layer_neurons,activation=f))
+
+ numberofclasses=len(output_column.unique())
+ classifier.add(tf.keras.layers.Dense(numberofclasses,activation=output_func))#output layer
+ '''
+ model=tf.keras.Sequential()
+ model.add(tf.keras.layers.Dense(1,input_dim=x_train.shape[1]))#input layer
+ model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
+ model.add(tf.keras.layers.Dense(len(output_column.unique())+1, activation='softmax'))
+ classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics)
+
+ history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test))
+ else:
+ classifier=tf.keras.Sequential()
+
+ for func in params["hiddenLayerActivationFunctions"]:
+ classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=func))
+ output_func = params["outputLayerActivationFunction"]
+
+ if(problem_type!="regresioni"):
+ classifier.add(tf.keras.layers.Dense(units=1,activation=output_func))
+ else:
+ classifier.add(tf.keras.layers.Dense(units=1))
+
+ optimizer = params["optimizer"]
+ metrics=params['metrics']
+ loss_func=params["lossFunction"]
+ classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics)
+ batch_size = params["batchSize"]
+ epochs = params["epochs"]
+ history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test), validation_split=0.2) # TODO params["validationSplit"]
#
# Test
#
model_name = params['_id']
- y_pred=classifier.predict(x_test)
+ #y_pred=classifier.predict(x_test)
if(problem_type == "regresioni"):
- classifier.evaluate(x_test, y_test)
- elif(problem_type == "binarni-klasifikacioni"):
+ y_pred=classifier.predict(x_test)
+ print(classifier.evaluate(x_test, y_test))
+ elif(problem_type == "binarni-klasifikacioni"):
+ y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
+ elif(problem_type=='multi-klasifikacioni'):
+ y_pred=classifier.predict(x_test)
+ y_pred=np.argmax(y_pred,axis=1)
+
y_pred=y_pred.flatten()
result=pd.DataFrame({"Actual":y_test,"Predicted":y_pred})
classifier.save("temp/"+model_name, save_format='h5')
+ # ROC multi-klasifikacioni
+ def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
+
+ #creating a set of all the unique classes using the actual class list
+ unique_class = set(actual_class)
+ roc_auc_dict = {}
+ for per_class in unique_class:
+
+ #creating a list of all the classes except the current class
+ other_class = [x for x in unique_class if x != per_class]
+
+ #marking the current class as 1 and all other classes as 0
+ new_actual_class = [0 if x in other_class else 1 for x in actual_class]
+ new_pred_class = [0 if x in other_class else 1 for x in pred_class]
+
+ #using the sklearn metrics method to calculate the roc_auc_score
+ roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average)
+ roc_auc_dict[per_class] = roc_auc
+
+ return roc_auc_dict
#
# Metrike
#
print("HELLO???")
print(result)
print("HELLO???")
- accuracy = float(sm.accuracy_score(y_test,y_pred))
- precision = float(sm.precision_score(y_test,y_pred))
- recall = float(sm.recall_score(y_test,y_pred))
- tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
- specificity = float(tn / (tn+fp))
- f1 = float(sm.f1_score(y_test,y_pred))
- mse = float(sm.mean_squared_error(y_test,y_pred))
- mae = float(sm.mean_absolute_error(y_test,y_pred))
- mape = float(sm.mean_absolute_percentage_error(y_test,y_pred))
- rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred)))
- fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
+ if(problem_type=="binarni-klasifikacioni"):
+ accuracy = float(sm.accuracy_score(y_test,y_pred))
+ precision = float(sm.precision_score(y_test,y_pred))
+ recall = float(sm.recall_score(y_test,y_pred))
+ tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
+ specificity = float(tn / (tn+fp))
+ f1 = float(sm.f1_score(y_test,y_pred))
+ fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
+ logloss = float(sm.log_loss(y_test, y_pred))
+ metrics= {"accuracy" : accuracy,
+ "precision" : precision,
+ "recall" : recall,
+ "specificity" : specificity,
+ "f1" : f1,
+ "tn" : float(tn),
+ "fp" : float(fp),
+ "fn" : float(fn),
+ "tp" : float(tp),
+ "fpr" : fpr.tolist(),
+ "tpr" : tpr.tolist(),
+ "logloss" : logloss
+ }
+ elif(problem_type=="regresioni"):
+ # https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/
+ mse = float(sm.mean_squared_error(y_test,y_pred))
+ mae = float(sm.mean_absolute_error(y_test,y_pred))
+ mape = float(sm.mean_absolute_percentage_error(y_test,y_pred))
+ rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred)))
+ rmsle = float(np.sqrt(sm.mean_squared_error(y_test, y_pred)))
+ r2 = float(sm.r2_score(y_test, y_pred))
+ # n - num of observations
+ # k - num of independent variables
+ n = 40
+ k = 2
+ adj_r2 = float(1 - ((1-r2)*(n-1)/(n-k-1)))
+ metrics= {"mse" : mse,
+ "mae" : mae,
+ "mape" : mape,
+ "rmse" : rmse,
+ "rmsle" : rmsle,
+ "r2" : r2,
+ "adj_r2" : adj_r2
+ }
+ elif(problem_type=="multi-klasifikacioni"):
+
+ cr=sm.classification_report(y_test, y_pred)
+ cm=sm.confusion_matrix(y_test,y_pred)
+ # https://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-classification/notebook
+ accuracy=metrics.accuracy_score(y_test, y_pred)
+ macro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'macro')
+ micro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'micro')
+ macro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'macro')
+ micro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'micro')
+ macro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'macro')
+ micro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'micro')
+ roc_auc_dict=roc_auc_score_multiclass(y_test, y_pred)
+
+
# TODO upload trenirani model nazad na backend
- return TrainingResult(accuracy, precision, recall, float(tn), float(fp), float(fn), float(tp), specificity, f1, mse, mae, mape, rmse, fpr.tolist(), tpr.tolist())
+ #return TrainingResult(metrics)
+def manageH5(datain,params,h5model):
+ dataset=datain.copy()
+ problem_type = params["type"]
+ data = pd.DataFrame()
+ for col in params["inputColumns"]:
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ #
+ # Brisanje null kolona / redova / zamena
+ #nullreplace=[
+ # {"column":"Embarked","value":"C","deleteRow":false,"deleteCol":true},
+ # {"column": "Cabin","value":"C123","deleteRow":"0","deleteCol":"0"}]
+
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ #
+ #print(data.isnull().any())
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ # Enkodiranje
+ # https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
+ #
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ x = data[x_columns].values
+ y = data[output_column].values
+
+
+ y_pred=h5model.predict_classes(x) \ No newline at end of file
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
new file mode 100644
index 00000000..50af15f8
--- /dev/null
+++ b/backend/microservice/api/newmlservice.py
@@ -0,0 +1,424 @@
+from enum import unique
+from itertools import count
+import pandas as pd
+from sklearn import datasets, multiclass
+import tensorflow as tf
+import keras
+import numpy as np
+import csv
+import json
+import h5py
+import sklearn.metrics as sm
+from statistics import mode
+from typing_extensions import Self
+from copyreg import constructor
+from flask import request, jsonify, render_template
+from sklearn.preprocessing import LabelEncoder, MinMaxScaler
+from sklearn.preprocessing import OrdinalEncoder
+import category_encoders as ce
+from sklearn.preprocessing import StandardScaler
+from sklearn.model_selection import train_test_split
+from dataclasses import dataclass
+import statistics as s
+from sklearn.metrics import roc_auc_score
+from ann_visualizer.visualize import ann_viz;
+def returnColumnsInfo(dataset):
+ dict=[]
+ datafront=dataset.copy()
+ svekolone=datafront.columns
+ kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ allNullCols=0
+ for kolona in svekolone:
+ if(kolona in kategorijskekolone):
+ uniquevalues=datafront[kolona].unique()
+ mean=0
+ median=0
+ nullCount=datafront[kolona].isnull().sum()
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':False,
+ 'uniqueValues':uniquevalues.tolist(),
+ 'median':float(mean),
+ 'mean':float(median),
+ 'numNulls':float(nullCount)
+ }
+ dict.append(frontreturn)
+ else:
+ mean=datafront[kolona].mean()
+ median=s.median(datafront[kolona])
+ nullCount=datafront[kolona].isnull().sum()
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':1,
+ 'uniqueValues':[],
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount)
+ }
+ dict.append(frontreturn)
+ NullRows = datafront[datafront.isnull().any(axis=1)]
+ #print(NullRows)
+ #print(len(NullRows))
+ allNullRows=len(NullRows)
+
+ return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows}
+
+@dataclass
+class TrainingResultClassification:
+ accuracy: float
+ precision: float
+ recall: float
+ tn: float
+ fp: float
+ fn: float
+ tp: float
+ specificity: float
+ f1: float
+ logloss: float
+ fpr: float
+ tpr: float
+ metrics: dict
+'''
+@datasets
+class TrainingResultRegression:
+ mse: float
+ mae: float
+ mape: float
+ rmse: float
+
+@dataclass
+class TrainingResult:
+ metrics: dict
+'''
+
+def train(dataset, params, callback):
+ problem_type = params["type"]
+ print(problem_type)
+ data = pd.DataFrame()
+ print(data)
+ for col in params["inputColumns"]:
+ print(col)
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ print(data)
+
+ ###NULL
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ print(data.shape)
+
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ ### Enkodiranje
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ print(x_columns)
+ x = data[x_columns].values
+ y = data[output_column].values
+
+ #
+ # Podela na test i trening skupove
+ #
+ test=params["randomTestSetDistribution"]
+ randomOrder = params["randomOrder"]
+ if(randomOrder):
+ random=123
+ else:
+ random=0
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
+ print(x_train,x_test)
+
+ #
+ # Treniranje modela
+ #
+ #
+ if(problem_type=='multi-klasifikacioni'):
+ #print('multi')
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=5, activation=params['outputLayerActivationFunction']))#izlazni sloj
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred=classifier.predict(x_test)
+ y_pred=np.argmax(y_pred,axis=1)
+ #print(y_pred.flatten())
+ #print(y_test)
+ scores = classifier.evaluate(x_test, y_test)
+ print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
+ classifier.save("temp/"+params['name'], save_format='h5')
+ #vizuelizacija u python-u
+ #from ann_visualizer.visualize import ann_viz;
+ #ann_viz(classifier, title="My neural network")
+
+ elif(problem_type=='binarni-klasifikacioni'):
+ #print('*************************************************************************binarni')
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=1, activation=params['outputLayerActivationFunction']))#izlazni sloj
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred=classifier.predict(x_test)
+ y_pred=(y_pred>=0.5).astype('int')
+
+ print(y_pred.flatten())
+ print(y_test)
+
+ scores = classifier.evaluate(x_test, y_test)
+ print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
+ #ann_viz(classifier, title="My neural network")
+
+ classifier.save("temp/"+params['name'], save_format='h5')
+
+ elif(problem_type=='regresioni'):
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=1))
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+ y_pred=classifier.predict(x_test)
+ print(classifier.evaluate(x_test, y_test))
+
+ def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
+
+ #creating a set of all the unique classes using the actual class list
+ unique_class = set(actual_class)
+ roc_auc_dict = {}
+ for per_class in unique_class:
+
+ #creating a list of all the classes except the current class
+ other_class = [x for x in unique_class if x != per_class]
+
+ #marking the current class as 1 and all other classes as 0
+ new_actual_class = [0 if x in other_class else 1 for x in actual_class]
+ new_pred_class = [0 if x in other_class else 1 for x in pred_class]
+
+ #using the sklearn metrics method to calculate the roc_auc_score
+ roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average)
+ roc_auc_dict[per_class] = roc_auc
+
+ return roc_auc_dict
+ #
+ # Metrike
+ #
+
+ if(problem_type=="binarni-klasifikacioni"):
+ accuracy = float(sm.accuracy_score(y_test,y_pred))
+ precision = float(sm.precision_score(y_test,y_pred))
+ recall = float(sm.recall_score(y_test,y_pred))
+ tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
+ specificity = float(tn / (tn+fp))
+ f1 = float(sm.f1_score(y_test,y_pred))
+ fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
+ logloss = float(sm.log_loss(y_test, y_pred))
+ metrics= {"accuracy" : accuracy,
+ "precision" : precision,
+ "recall" : recall,
+ "specificity" : specificity,
+ "f1" : f1,
+ "tn" : float(tn),
+ "fp" : float(fp),
+ "fn" : float(fn),
+ "tp" : float(tp),
+ "fpr" : fpr.tolist(),
+ "tpr" : tpr.tolist(),
+ "logloss" : logloss
+ }
+ elif(problem_type=="regresioni"):
+ # https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/
+ mse = float(sm.mean_squared_error(y_test,y_pred))
+ mae = float(sm.mean_absolute_error(y_test,y_pred))
+ mape = float(sm.mean_absolute_percentage_error(y_test,y_pred))
+ rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred)))
+ rmsle = float(np.sqrt(sm.mean_squared_error(y_test, y_pred)))
+ r2 = float(sm.r2_score(y_test, y_pred))
+ # n - num of observations
+ # k - num of independent variables
+ n = 40
+ k = 2
+ adj_r2 = float(1 - ((1-r2)*(n-1)/(n-k-1)))
+ metrics= {"mse" : mse,
+ "mae" : mae,
+ "mape" : mape,
+ "rmse" : rmse,
+ "rmsle" : rmsle,
+ "r2" : r2,
+ "adj_r2" : adj_r2
+ }
+ '''
+ elif(problem_type=="multi-klasifikacioni"):
+
+ cr=sm.classification_report(y_test, y_pred)
+ cm=sm.confusion_matrix(y_test,y_pred)
+ # https://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-classification/notebook
+ accuracy=metrics.accuracy_score(y_test, y_pred)
+ macro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'macro')
+ micro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'micro')
+ macro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'macro')
+ micro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'micro')
+ macro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'macro')
+ micro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'micro')
+ roc_auc_dict=roc_auc_score_multiclass(y_test, y_pred)
+ '''
+
+def manageH5(dataset,params,h5model):
+ problem_type = params["type"]
+ print(problem_type)
+ data = pd.DataFrame()
+ #print(data)
+ for col in params["inputColumns"]:
+ print(col)
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ #print(data)
+
+ ###NULL
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ print(data.shape)
+
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ ### Enkodiranje
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ #print(data)
+
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ #print(x_columns)
+ x2 = data[x_columns]
+ print(x2)
+ print(x2.values)
+ x2 = data[x_columns].values
+ print(x2)
+ y2 = data[output_column].values
+ h5model.summary()
+ ann_viz(h5model, title="My neural network")
+
+ h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
+
+ history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred2=h5model.predict(x2)
+
+ y_pred2=np.argmax(y_pred2,axis=1)
+ #y_pred=h5model.predict_classes(x)
+ score = h5model.evaluate(x2,y_pred2, verbose=0)
+ print("%s: %.2f%%" % (h5model.metrics_names[1], score[1]*100))
+ print(y_pred2)
+ print( 'done') \ No newline at end of file
diff --git a/backend/microservice/mlservice.py b/backend/microservice/mlservice.py
index b2eafe9a..8f56fc3f 100644
--- a/backend/microservice/mlservice.py
+++ b/backend/microservice/mlservice.py
@@ -54,6 +54,38 @@ def obuka(dataunos,params,modelunos,dataunosdrugog):
data[zeljenekolone[i]]=dataunos[zeljenekolone[i]]
#print(data.head(10))
+ ### 0.1) Povratne vrednosti statistike za front (za popunjavanje null vrednosti izabranih kolona) PART4
+ datafront=data.copy()
+ svekolone=datafront.columns
+ kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ #print(kategorijskekolone )
+ #kategorijskekolone=datacategorical.columns
+ #print(svekolone)
+ for i in range(len(svekolone)):
+ nazivkolone=svekolone[i]
+ if(nazivkolone in kategorijskekolone):
+ svekategorije=datafront[nazivkolone].unique()
+ medijana=None
+ srednjavrednost=None
+ frontreturn={'colName':nazivkolone,
+ 'colType':'categorical',
+ 'categoricalValues':svekategorije,
+ 'mean':medijana,
+ 'average':srednjavrednost
+ }
+ else:
+ svekategorije=None
+ medijana=datafront[nazivkolone].mean()
+ srednjavrednost=sum(datafront[nazivkolone])/len(datafront[nazivkolone])
+ frontreturn={'colName':nazivkolone,
+ 'colType':'noncategorical',
+ 'categoricalValues':svekategorije,
+ 'mean':medijana,
+ 'average':srednjavrednost
+ }
+
+ print(frontreturn)
+
#predvidetikol=input("UNETI NAZIV KOLONE ČIJU VREDNOST TREBA PREDVIDETI ")
###sta se cuva od promenjivih broj kolone ili naziv kolone???
diff --git a/frontend/angular.json b/frontend/angular.json
index b1aaac3f..f9825281 100644
--- a/frontend/angular.json
+++ b/frontend/angular.json
@@ -33,7 +33,10 @@
"./node_modules/@angular/material/prebuilt-themes/indigo-pink.css"
],
"scripts": [
- "node_modules/bootstrap/dist/js/bootstrap.bundle.min.js"
+ "node_modules/bootstrap/dist/js/bootstrap.bundle.min.js",
+ "node_modules/jquery/dist/jquery.min.js",
+ "node_modules/popper.js/dist/popper.min.js",
+ "node_modules/bootstrap/dist/js/bootstrap.min.js"
]
},
"configurations": {
@@ -41,13 +44,13 @@
"budgets": [
{
"type": "initial",
- "maximumWarning": "500kb",
- "maximumError": "1mb"
+ "maximumWarning": "2mb",
+ "maximumError": "4mb"
},
{
"type": "anyComponentStyle",
- "maximumWarning": "2kb",
- "maximumError": "4kb"
+ "maximumWarning": "10kb",
+ "maximumError": "15kb"
}
],
"fileReplacements": [
diff --git a/frontend/package-lock.json b/frontend/package-lock.json
index 962905b7..c79f4ea9 100644
--- a/frontend/package-lock.json
+++ b/frontend/package-lock.json
@@ -27,6 +27,7 @@
"chart.js": "^3.7.1",
"csv-parser": "^3.0.0",
"d3-graphviz": "^2.6.1",
+ "jquery": "^3.6.0",
"mdb-angular-ui-kit": "^2.0.0",
"ng-multiselect-dropdown": "^0.3.8",
"ng-uikit-pro-standard": "^1.0.0",
@@ -34,6 +35,7 @@
"ng2-search-filter": "^0.5.1",
"ngx-cookie-service": "^13.1.2",
"ngx-csv-parser": "^0.0.7",
+ "popper.js": "^1.16.1",
"rxjs": "~7.5.0",
"tslib": "^2.3.1",
"websocket-ts": "^1.1.1",
@@ -7082,6 +7084,11 @@
"url": "https://github.com/chalk/supports-color?sponsor=1"
}
},
+ "node_modules/jquery": {
+ "version": "3.6.0",
+ "resolved": "https://registry.npmjs.org/jquery/-/jquery-3.6.0.tgz",
+ "integrity": "sha512-JVzAR/AjBvVt2BmYhxRCSYysDsPcssdmTFnzyLEts9qNwmjmu4JTAMYubEfwVOSwpQ1I1sKKFcxhZCI2buerfw=="
+ },
"node_modules/js-tokens": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz",
@@ -9018,6 +9025,16 @@
"node": ">=8"
}
},
+ "node_modules/popper.js": {
+ "version": "1.16.1",
+ "resolved": "https://registry.npmjs.org/popper.js/-/popper.js-1.16.1.tgz",
+ "integrity": "sha512-Wb4p1J4zyFTbM+u6WuO4XstYx4Ky9Cewe4DWrel7B0w6VVICvPwdOpotjzcf6eD8TsckVnIMNONQyPIUFOUbCQ==",
+ "deprecated": "You can find the new Popper v2 at @popperjs/core, this package is dedicated to the legacy v1",
+ "funding": {
+ "type": "opencollective",
+ "url": "https://opencollective.com/popperjs"
+ }
+ },
"node_modules/portfinder": {
"version": "1.0.28",
"resolved": "https://registry.npmjs.org/portfinder/-/portfinder-1.0.28.tgz",
@@ -16882,6 +16899,11 @@
}
}
},
+ "jquery": {
+ "version": "3.6.0",
+ "resolved": "https://registry.npmjs.org/jquery/-/jquery-3.6.0.tgz",
+ "integrity": "sha512-JVzAR/AjBvVt2BmYhxRCSYysDsPcssdmTFnzyLEts9qNwmjmu4JTAMYubEfwVOSwpQ1I1sKKFcxhZCI2buerfw=="
+ },
"js-tokens": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz",
@@ -18345,6 +18367,11 @@
"find-up": "^4.0.0"
}
},
+ "popper.js": {
+ "version": "1.16.1",
+ "resolved": "https://registry.npmjs.org/popper.js/-/popper.js-1.16.1.tgz",
+ "integrity": "sha512-Wb4p1J4zyFTbM+u6WuO4XstYx4Ky9Cewe4DWrel7B0w6VVICvPwdOpotjzcf6eD8TsckVnIMNONQyPIUFOUbCQ=="
+ },
"portfinder": {
"version": "1.0.28",
"resolved": "https://registry.npmjs.org/portfinder/-/portfinder-1.0.28.tgz",
diff --git a/frontend/package.json b/frontend/package.json
index 9df48b0c..ad68e176 100644
--- a/frontend/package.json
+++ b/frontend/package.json
@@ -30,6 +30,7 @@
"chart.js": "^3.7.1",
"csv-parser": "^3.0.0",
"d3-graphviz": "^2.6.1",
+ "jquery": "^3.6.0",
"mdb-angular-ui-kit": "^2.0.0",
"ng-multiselect-dropdown": "^0.3.8",
"ng-uikit-pro-standard": "^1.0.0",
@@ -37,6 +38,7 @@
"ng2-search-filter": "^0.5.1",
"ngx-cookie-service": "^13.1.2",
"ngx-csv-parser": "^0.0.7",
+ "popper.js": "^1.16.1",
"rxjs": "~7.5.0",
"tslib": "^2.3.1",
"websocket-ts": "^1.1.1",
diff --git a/frontend/src/app/Shared.ts b/frontend/src/app/Shared.ts
index 31afb1a6..86e26687 100644
--- a/frontend/src/app/Shared.ts
+++ b/frontend/src/app/Shared.ts
@@ -1,9 +1,32 @@
+import { ElementRef } from "@angular/core";
+import { NgbModal } from "@ng-bootstrap/ng-bootstrap";
+import { MatDialog, MatDialogRef, MAT_DIALOG_DATA } from '@angular/material/dialog';
+import { AlertDialogComponent } from './_modals/alert-dialog/alert-dialog.component';
+
class Shared {
constructor(
public loggedIn: boolean,
public username: string = '',
- public photoId: string = '1'
+ public photoId: string = '1',
+ public dialog?: MatDialog
+ //public alertDialog?: ElementRef
) { }
+
+
+ openDialog(title: string, message: string): void {
+ console.log("USAO U OPEN DIALOG 1");
+
+ if (this.dialog) {
+ console.log("USAO U OPEN DIALOG 2");
+ const dialogRef = this.dialog.open(AlertDialogComponent, {
+ //width: '250px',
+ data: { title: title, message: message }
+ });
+ dialogRef.afterClosed().subscribe(res => {
+ //nesto
+ });
+ }
+ }
}
export default new Shared(false); \ No newline at end of file
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index 1ad4fc6d..85b6db2b 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -45,22 +45,22 @@ export enum ProblemType {
export enum Encoding {
Label = 'label',
OneHot = 'onehot',
+ Ordinal = 'ordinal',
+ Hashing = 'hashing',
+ Binary = 'binary',
+ BaseN = 'baseN'
/*
BackwardDifference = 'backward difference',
- BaseN = 'baseN',
- Binary = 'binary',
CatBoost = 'cat boost',
Count = 'count',
GLMM = 'glmm',
- Hashing = 'hashing',
+ Target = 'target',
Helmert = 'helmert',
JamesStein = 'james stein',
LeaveOneOut = 'leave one out',
MEstimate = 'MEstimate',
- Ordinal = 'ordinal',
Sum = 'sum',
Polynomial = 'polynomial',
- Target = 'target',
WOE = 'woe',
Quantile = 'quantile'
*/
@@ -104,7 +104,7 @@ export enum LossFunction {
BinaryCrossEntropy = 'binary_crossentropy',
SquaredHingeLoss = 'squared_hinge_loss',
HingeLoss = 'hinge_loss',
- // multi-class classiication loss functions
+ // multi-class classification loss functions
CategoricalCrossEntropy = 'categorical_crossentropy',
SparseCategoricalCrossEntropy = 'sparse_categorical_crosentropy',
KLDivergence = 'kullback_leibler_divergence',
diff --git a/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.css b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.css
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.css
diff --git a/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.html b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.html
new file mode 100644
index 00000000..dfeb4f62
--- /dev/null
+++ b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.html
@@ -0,0 +1,41 @@
+<div class="row mb-4">
+ <div class="col-2">
+ </div>
+ <div class="col-3">
+ <label for="name" class="col-form-label">Naziv dataseta:</label>
+ <input type="text" class="form-control mb-1" name="name" placeholder="Naziv..." [(ngModel)]="dataset.name">
+
+ <label for="desc" class="col-sm-2 col-form-label">Opis:</label>
+ <div>
+ <textarea class="form-control" name="desc" rows="3" [(ngModel)]="dataset.description"></textarea>
+ </div>
+
+ <label for="checkboxIsPublic" class="form-check-label mt-3 mb-1">Želite li da dataset bude javan?
+ <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="dataset.isPublic" (change)="checkAccessible()" type="checkbox"
+ value="" id="checkboxIsPublic">
+ </label>
+
+ <label for="checkboxAccessibleByLink" class="form-check-label">Želite li da bude deljiv linkom? &nbsp;
+ <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="dataset.accessibleByLink" type="checkbox"
+ value="" id="checkboxAccessibleByLink">
+ </label>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-4 mt-4">
+
+ <input list=delimiterOptions placeholder="Izaberite ili ukucajte delimiter za .csv fajl" class="form-control mt-2"
+ [(ngModel)]="dataset.delimiter" (input)="update()">
+ <datalist id=delimiterOptions>
+ <option *ngFor="let option of delimiterOptions">{{option}}</option>
+ </datalist>
+
+ <label for="type" class="form-check-label my-5">Da li .csv ima header?
+ <input class="mx-3 form-check-input" type="checkbox" (input)="update()" [(ngModel)]="dataset.hasHeader" type="checkbox"
+ value="" id="checkboxHeader" checked>
+ </label>
+ <br>
+ <input id="fileInput" class="form-control" type="file" class="upload" (change)="changeListener($event)"
+ accept=".csv">
+ </div>
+ </div> \ No newline at end of file
diff --git a/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.spec.ts b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.spec.ts
new file mode 100644
index 00000000..a9ea25b4
--- /dev/null
+++ b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.spec.ts
@@ -0,0 +1,25 @@
+import { ComponentFixture, TestBed } from '@angular/core/testing';
+
+import { AddNewDatasetComponent } from './add-new-dataset.component';
+
+describe('AddNewDatasetComponent', () => {
+ let component: AddNewDatasetComponent;
+ let fixture: ComponentFixture<AddNewDatasetComponent>;
+
+ beforeEach(async () => {
+ await TestBed.configureTestingModule({
+ declarations: [ AddNewDatasetComponent ]
+ })
+ .compileComponents();
+ });
+
+ beforeEach(() => {
+ fixture = TestBed.createComponent(AddNewDatasetComponent);
+ component = fixture.componentInstance;
+ fixture.detectChanges();
+ });
+
+ it('should create', () => {
+ expect(component).toBeTruthy();
+ });
+});
diff --git a/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.ts b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.ts
new file mode 100644
index 00000000..fceb53cf
--- /dev/null
+++ b/frontend/src/app/_elements/add-new-dataset/add-new-dataset.component.ts
@@ -0,0 +1,78 @@
+import { Component, EventEmitter, Output, ViewChild } from '@angular/core';
+import { NgxCsvParser, NgxCSVParserError } from 'ngx-csv-parser';
+import Dataset from 'src/app/_data/Dataset';
+
+@Component({
+ selector: 'app-add-new-dataset',
+ templateUrl: './add-new-dataset.component.html',
+ styleUrls: ['./add-new-dataset.component.css']
+})
+export class AddNewDatasetComponent {
+
+ @Output() loaded = new EventEmitter<string>();
+
+ delimiterOptions: Array<string> = [",", ";", "\t", "razmak", "|"]; //podrazumevano ","
+
+ //hasHeader: boolean = true;
+ hasInput: boolean = false;
+
+ csvRecords: any[] = [];
+ files: File[] = [];
+ rowsNumber: number = 0;
+ colsNumber: number = 0;
+
+ dataset: Dataset; //dodaj ! potencijalno
+
+ constructor(private ngxCsvParser: NgxCsvParser) {
+ this.dataset = new Dataset();
+ }
+
+ //@ViewChild('fileImportInput', { static: false }) fileImportInput: any; cemu je ovo sluzilo?
+
+ changeListener($event: any): void {
+ this.files = $event.srcElement.files;
+ if (this.files.length == 0 || this.files[0] == null) {
+ //console.log("NEMA FAJLA");
+ //this.loaded.emit("not loaded");
+ this.hasInput = false;
+ return;
+ }
+ else
+ this.hasInput = true;
+
+ this.update();
+ }
+
+ update() {
+
+ if (this.files.length < 1)
+ return;
+
+ this.ngxCsvParser.parse(this.files[0], { header: false, delimiter: (this.dataset.delimiter == "razmak") ? " " : (this.dataset.delimiter == "") ? "," : this.dataset.delimiter })
+ .pipe().subscribe((result) => {
+
+ console.log('Result', result);
+ if (result.constructor === Array) {
+ this.csvRecords = result;
+ if (this.dataset.hasHeader)
+ this.rowsNumber = this.csvRecords.length - 1;
+ else
+ this.rowsNumber = this.csvRecords.length;
+ this.colsNumber = this.csvRecords[0].length;
+
+ if (this.dataset.hasHeader) //kasnije dodati opciju kada nema header da korisnik rucno unosi header-e
+ this.dataset.header = this.csvRecords[0];
+
+ this.loaded.emit("loaded");
+ }
+ }, (error: NgxCSVParserError) => {
+ console.log('Error', error);
+ });
+ }
+
+ checkAccessible() {
+ if (this.dataset.isPublic)
+ this.dataset.accessibleByLink = true;
+ }
+
+}
diff --git a/frontend/src/app/_elements/annvisual/annvisual.component.html b/frontend/src/app/_elements/annvisual/annvisual.component.html
index f23022de..09251398 100644
--- a/frontend/src/app/_elements/annvisual/annvisual.component.html
+++ b/frontend/src/app/_elements/annvisual/annvisual.component.html
@@ -1,5 +1,5 @@
-<div style="text-align: center; width: 100%;" >
+<div style="text-align: center; " >
<button (click)="d3()" mat-raised-button color="primary">Prikaz veštačke neuronske mreže</button>
- <div id="graph" align-items-center ></div>
+ <div id="graph" align-items-center style="width: 12rem;"></div>
</div>
diff --git a/frontend/src/app/_elements/dataset-load/dataset-load.component.css b/frontend/src/app/_elements/dataset-load/dataset-load.component.css
index 05819702..54e0738e 100644
--- a/frontend/src/app/_elements/dataset-load/dataset-load.component.css
+++ b/frontend/src/app/_elements/dataset-load/dataset-load.component.css
@@ -1,6 +1,13 @@
-#divInputs {
- margin-left: 20px;
+.btnType1 {
+ background-color: #003459;
+ color: white;
}
-#divOutputs {
- margin-left: 20px;
+.btnType2 {
+ background-color: white;
+ color: #003459;
+ border-color: #003459;
+}
+.selectedDatasetClass {
+ /*border-color: 2px solid #003459;*/
+ background-color: lightblue;
} \ No newline at end of file
diff --git a/frontend/src/app/_elements/dataset-load/dataset-load.component.html b/frontend/src/app/_elements/dataset-load/dataset-load.component.html
index 76e46092..674e5990 100644
--- a/frontend/src/app/_elements/dataset-load/dataset-load.component.html
+++ b/frontend/src/app/_elements/dataset-load/dataset-load.component.html
@@ -1,44 +1,42 @@
<div>
- <div class="row mb-4">
- <div class="col-2">
- </div>
- <div class="col-3">
- <label for="name" class="col-form-label">Naziv dataseta:</label>
- <input type="text" class="form-control mb-1" name="name" placeholder="Naziv..." [(ngModel)]="dataset.name">
-
- <label for="desc" class="col-sm-2 col-form-label">Opis:</label>
- <div>
- <textarea class="form-control" name="desc" rows="3" [(ngModel)]="dataset.description"></textarea>
- </div>
+ <!--Sklonjeno ucitavanje novog dataseta i sve opcije u vezi sa tim, premesteno u add-new-dataset-->
- <label for="checkboxIsPublic" class="form-check-label mt-3 mb-1">Želite li da dataset bude javan?
- <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="dataset.isPublic" (change)="checkAccessible()" type="checkbox"
- value="" id="checkboxIsPublic">
- </label>
-
- <label for="checkboxAccessibleByLink" class="form-check-label">Želite li da bude deljiv linkom? &nbsp;
- <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="dataset.accessibleByLink" type="checkbox"
- value="" id="checkboxAccessibleByLink">
- </label>
- </div>
+ <div class="col-12 d-flex my-5">
+ <h2 class="">Izvor podataka:</h2>
<div class="col-1">
</div>
- <div class="col-4 mt-4">
-
- <input list=delimiterOptions placeholder="Izaberite ili ukucajte delimiter za .csv fajl" class="form-control mt-2"
- [(ngModel)]="dataset.delimiter" (input)="update()">
- <datalist id=delimiterOptions>
- <option *ngFor="let option of delimiterOptions">{{option}}</option>
- </datalist>
+ <button type="button" id="btnMyDataset" class="btn" (click)="viewMyDatasetsForm()"
+ [ngClass]="{'btnType1': showMyDatasets, 'btnType2': !showMyDatasets}">
+ Izaberite dataset iz kolekcije
+ </button>
+ <h3 class="mt-3 mx-3">ili</h3>
+ <button type="button" id="btnNewDataset" class="btn" (click)="viewNewDatasetForm()"
+ [ngClass]="{'btnType1': !showMyDatasets, 'btnType2': showMyDatasets}">
+ Dodajte novi dataset
+ </button>
+ </div>
+ <div class="px-5 my-2">
+ <input *ngIf="showMyDatasets" type="text" class="form-control" placeholder="Pretraga"
+ [(ngModel)]="term">
+ </div>
+ <div class="px-5">
+ <div *ngIf="showMyDatasets" class="overflow-auto" style="max-height: 500px;">
+ <ul class="list-group">
+ <li class="list-group-item p-3" *ngFor="let dataset of myDatasets|filter:term"
+ [ngClass]="{'selectedDatasetClass': this.selectedDataset == dataset}">
+ <app-item-dataset name="usersDataset" [dataset]="dataset"
+ (click)="selectThisDataset(dataset);"></app-item-dataset>
+ </li>
+ </ul>
+ </div>
+ </div>
- <label for="type" class="form-check-label my-5">Da li .csv ima header?
- <input class="mx-3 form-check-input" type="checkbox" (input)="update()" [(ngModel)]="dataset.hasHeader" type="checkbox"
- value="" id="checkboxHeader" checked>
- </label>
- <br>
- <input id="fileInput" class="form-control" type="file" class="upload" (change)="changeListener($event)"
- accept=".csv">
- </div>
+ <app-add-new-dataset [style]="(showMyDatasets)?'display:none;visibility:hidden;':''" id="dataset"
+ (loaded)="datasetLoaded = true; selectedDataset = addNewDatasetComponent?.dataset; datasetFile = addNewDatasetComponent?.csvRecords; datasetHasHeader = addNewDatasetComponent?.dataset!.hasHeader">
+ </app-add-new-dataset>
+ <div class="px-5 mt-5">
+ <app-datatable [data]="datasetFile" [hasHeader]="datasetHasHeader"></app-datatable>
</div>
+
</div> \ No newline at end of file
diff --git a/frontend/src/app/_elements/dataset-load/dataset-load.component.ts b/frontend/src/app/_elements/dataset-load/dataset-load.component.ts
index f9343117..ed71dc3c 100644
--- a/frontend/src/app/_elements/dataset-load/dataset-load.component.ts
+++ b/frontend/src/app/_elements/dataset-load/dataset-load.component.ts
@@ -1,6 +1,12 @@
-import { Component, EventEmitter, Output, ViewChild } from '@angular/core';
-import { NgxCsvParser, NgxCSVParserError } from 'ngx-csv-parser';
+import { Component, OnInit, ViewChild } from '@angular/core';
+import { AddNewDatasetComponent } from '../add-new-dataset/add-new-dataset.component';
+import { ModelsService } from 'src/app/_services/models.service';
+import shared from 'src/app/Shared';
import Dataset from 'src/app/_data/Dataset';
+import { DatatableComponent } from 'src/app/_elements/datatable/datatable.component';
+import { DatasetsService } from 'src/app/_services/datasets.service';
+import { CsvParseService } from 'src/app/_services/csv-parse.service';
+import { Output, EventEmitter } from '@angular/core';
@Component({
selector: 'app-dataset-load',
@@ -9,70 +15,77 @@ import Dataset from 'src/app/_data/Dataset';
})
export class DatasetLoadComponent {
- @Output() loaded = new EventEmitter<string>();
+ @Output() selectedDatasetChangeEvent = new EventEmitter<Dataset>();
- delimiterOptions: Array<string> = [",", ";", "\t", "razmak", "|"]; //podrazumevano ","
+ @ViewChild(AddNewDatasetComponent) addNewDatasetComponent?: AddNewDatasetComponent;
+ @ViewChild(AddNewDatasetComponent) datatable?: DatatableComponent;
+ datasetLoaded: boolean = false;
+ selectedDatasetLoaded: boolean = false;
- //hasHeader: boolean = true;
- hasInput: boolean = false;
+ showMyDatasets: boolean = true;
+ myDatasets?: Dataset[];
+ existingDatasetSelected: boolean = false;
+ selectedDataset?: Dataset;
+ otherDataset?: Dataset;
+ otherDatasetFile?: any[];
+ datasetFile?: any[];
+ datasetHasHeader?: boolean = true;
- csvRecords: any[] = [];
- files: File[] = [];
- rowsNumber: number = 0;
- colsNumber: number = 0;
+ term: string = "";
- dataset: Dataset; //dodaj ! potencijalno
-
- constructor(private ngxCsvParser: NgxCsvParser) {
- this.dataset = new Dataset();
+ constructor(private models: ModelsService, private datasets: DatasetsService, private csv: CsvParseService) {
+ this.datasets.getMyDatasets().subscribe((datasets) => {
+ this.myDatasets = datasets;
+ });
}
- @ViewChild('fileImportInput', { static: false }) fileImportInput: any;
-
- changeListener($event: any): void {
- this.files = $event.srcElement.files;
- if (this.files.length == 0 || this.files[0] == null) {
- //console.log("NEMA FAJLA");
- //this.loaded.emit("not loaded");
- this.hasInput = false;
- return;
- }
- else
- this.hasInput = true;
-
- this.update();
+ viewMyDatasetsForm() {
+ this.showMyDatasets = true;
+ this.resetSelectedDataset();
+ //this.resetCbsAndRbs(); //TREBA DA SE DESI
+ }
+ viewNewDatasetForm() {
+ this.showMyDatasets = false;
+ this.resetSelectedDataset();
+ //this.resetCbsAndRbs(); //TREBA DA SE DESI
}
- update() {
-
- if (this.files.length < 1)
- return;
-
- this.ngxCsvParser.parse(this.files[0], { header: false, delimiter: (this.dataset.delimiter == "razmak") ? " " : (this.dataset.delimiter == "") ? "," : this.dataset.delimiter })
- .pipe().subscribe((result) => {
-
- console.log('Result', result);
- if (result.constructor === Array) {
- this.csvRecords = result;
- if (this.dataset.hasHeader)
- this.rowsNumber = this.csvRecords.length - 1;
+ selectThisDataset(dataset: Dataset) {
+ this.selectedDataset = dataset;
+ this.selectedDatasetLoaded = false;
+ this.existingDatasetSelected = true;
+ this.datasetHasHeader = this.selectedDataset.hasHeader;
+
+ this.datasets.getDatasetFile(dataset.fileId).subscribe((file: string | undefined) => {
+ if (file) {
+ this.datasetFile = this.csv.csvToArray(file, (dataset.delimiter == "razmak") ? " " : (dataset.delimiter == "") ? "," : dataset.delimiter);
+ /*for (let i = this.datasetFile.length - 1; i >= 0; i--) { //moguce da je vise redova na kraju fajla prazno i sl.
+ if (this.datasetFile[i].length != this.datasetFile[0].length)
+ this.datasetFile[i].pop();
else
- this.rowsNumber = this.csvRecords.length;
- this.colsNumber = this.csvRecords[0].length;
+ break; //nema potrebe dalje
+ }*/
+ //console.log(this.datasetFile);
+ //this.resetCbsAndRbs(); //TREBA DA SE DESI
+ //this.refreshThreeNullValueRadioOptions(); //TREBA DA SE DESI
+ this.selectedDatasetLoaded = true;
+ //this.scrollToNextForm();
+ }
+ });
+ }
- if (this.dataset.hasHeader) //kasnije dodati opciju kada nema header da korisnik rucno unosi header-e
- this.dataset.header = this.csvRecords[0];
+ resetSelectedDataset(): boolean {
+ const temp = this.selectedDataset;
+ this.selectedDataset = this.otherDataset;
+ this.otherDataset = temp;
+ const tempFile = this.datasetFile;
+ this.datasetFile = this.otherDatasetFile;
+ this.otherDatasetFile = tempFile;
- this.loaded.emit("loaded");
- }
- }, (error: NgxCSVParserError) => {
- console.log('Error', error);
- });
- }
+ this.selectedDatasetChangeEvent.emit(this.selectedDataset);
- checkAccessible() {
- if (this.dataset.isPublic)
- this.dataset.accessibleByLink = true;
+ return true;
}
+
}
diff --git a/frontend/src/app/_elements/item-model/item-model.component.html b/frontend/src/app/_elements/item-model/item-model.component.html
index 9466da01..c8c1a36d 100644
--- a/frontend/src/app/_elements/item-model/item-model.component.html
+++ b/frontend/src/app/_elements/item-model/item-model.component.html
@@ -6,9 +6,9 @@
<div class="card-body overflow-hidden">
<p class="card-text">
{{"Opis: "+ model.description}}<br>
- {{"Datum kreiranja:" + model.dateCreated}}<br>
- {{"Poslednje ažuriranje:" + model.lastUpdated}}<br>
+ {{"Datum kreiranja: " + model.dateCreated}}<br>
+ {{"Poslednje ažuriranje: " + model.lastUpdated}}<br>
</p>
-
+ <app-annvisual class="align-items-center" [model]="model" style="width: 12rem"></app-annvisual>
</div>
</div> \ No newline at end of file
diff --git a/frontend/src/app/_elements/item-predictor/item-predictor.component.ts b/frontend/src/app/_elements/item-predictor/item-predictor.component.ts
index b6b5c9db..246032e0 100644
--- a/frontend/src/app/_elements/item-predictor/item-predictor.component.ts
+++ b/frontend/src/app/_elements/item-predictor/item-predictor.component.ts
@@ -17,8 +17,7 @@ export class ItemPredictorComponent implements OnInit {
}
openPredictor() {
- this.router.navigate(['predict/'+ '6244958a26cf2385bc29ba2c']);
- //this.router.navigate(['predict'+this.predictor._id]);
+ this.router.navigate(['predict/'+ this.predictor._id]);
}
}
diff --git a/frontend/src/app/_elements/navbar/navbar.component.ts b/frontend/src/app/_elements/navbar/navbar.component.ts
index 2e4bde91..368508ed 100644
--- a/frontend/src/app/_elements/navbar/navbar.component.ts
+++ b/frontend/src/app/_elements/navbar/navbar.component.ts
@@ -3,6 +3,7 @@ import { Location } from '@angular/common';
import { AuthService } from '../../_services/auth.service';
import shared from 'src/app/Shared';
import { UserInfoService } from 'src/app/_services/user-info.service';
+import { MatDialog } from '@angular/material/dialog';
@Component({
selector: 'app-navbar',
@@ -14,7 +15,8 @@ export class NavbarComponent implements OnInit {
currentUrl: string;
shared = shared;
- constructor(public location: Location, private auth: AuthService, private userInfoService: UserInfoService) {
+ constructor(public location: Location, private auth: AuthService, private userInfoService: UserInfoService, private matDialog: MatDialog) {
+ shared.dialog = matDialog;
this.currentUrl = this.location.path();
this.location.onUrlChange(() => {
this.currentUrl = this.location.path();
diff --git a/frontend/src/app/_modals/alert-dialog/alert-dialog.component.css b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.css
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.css
diff --git a/frontend/src/app/_modals/alert-dialog/alert-dialog.component.html b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.html
new file mode 100644
index 00000000..82365193
--- /dev/null
+++ b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.html
@@ -0,0 +1,7 @@
+<h2 mat-dialog-title class="text-muted">{{data.title}}</h2>
+<div mat-dialog-content class="mt-4" style="color: rgb(81, 76, 76);">
+ {{data.message}}
+</div>
+<div mat-dialog-actions class="d-flex justify-content-center mt-4">
+ <button mat-button cdkFocusInitial (click)="onOkClick()" style="background-color: lightgray;">OK</button>
+</div> \ No newline at end of file
diff --git a/frontend/src/app/_modals/alert-dialog/alert-dialog.component.spec.ts b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.spec.ts
new file mode 100644
index 00000000..a93fc493
--- /dev/null
+++ b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.spec.ts
@@ -0,0 +1,25 @@
+import { ComponentFixture, TestBed } from '@angular/core/testing';
+
+import { AlertDialogComponent } from './alert-dialog.component';
+
+describe('AlertDialogComponent', () => {
+ let component: AlertDialogComponent;
+ let fixture: ComponentFixture<AlertDialogComponent>;
+
+ beforeEach(async () => {
+ await TestBed.configureTestingModule({
+ declarations: [ AlertDialogComponent ]
+ })
+ .compileComponents();
+ });
+
+ beforeEach(() => {
+ fixture = TestBed.createComponent(AlertDialogComponent);
+ component = fixture.componentInstance;
+ fixture.detectChanges();
+ });
+
+ it('should create', () => {
+ expect(component).toBeTruthy();
+ });
+});
diff --git a/frontend/src/app/_modals/alert-dialog/alert-dialog.component.ts b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.ts
new file mode 100644
index 00000000..e15f3c6f
--- /dev/null
+++ b/frontend/src/app/_modals/alert-dialog/alert-dialog.component.ts
@@ -0,0 +1,28 @@
+import { Component, OnInit } from '@angular/core';
+import { Inject} from '@angular/core';
+import { MatDialog, MatDialogRef, MAT_DIALOG_DATA} from '@angular/material/dialog';
+
+interface DialogData {
+ title: string;
+ message: string;
+}
+
+@Component({
+ selector: 'app-alert-dialog',
+ templateUrl: './alert-dialog.component.html',
+ styleUrls: ['./alert-dialog.component.css']
+})
+export class AlertDialogComponent {
+
+ constructor(
+ public dialogRef: MatDialogRef<AlertDialogComponent>,
+ @Inject(MAT_DIALOG_DATA) public data: DialogData,
+ //public dialog: MatDialog
+ ) {}
+
+ onOkClick(): void {
+ this.dialogRef.close();
+ }
+
+
+}
diff --git a/frontend/src/app/_modals/login-modal/login-modal.component.html b/frontend/src/app/_modals/login-modal/login-modal.component.html
index d7836848..03048155 100644
--- a/frontend/src/app/_modals/login-modal/login-modal.component.html
+++ b/frontend/src/app/_modals/login-modal/login-modal.component.html
@@ -3,7 +3,7 @@
<div class="modal-dialog modal-dialog-centered">
<div class="modal-content">
<div class="modal-header" style="background-color: #003459;">
- <button id="closeButton" type="button" class="btn-close" style="background-color:white;" data-bs-dismiss="modal" aria-label="Close" (click)="resetData()"></button>
+ <button #closeButton type="button" class="btn-close" style="background-color:white;" data-bs-dismiss="modal" aria-label="Close" (click)="resetData()"></button>
</div>
<div class="modal-body px-5" style="color:#003459">
<h1 class="text-center mt-2 mb-4">Prijavite se</h1>
diff --git a/frontend/src/app/_modals/login-modal/login-modal.component.ts b/frontend/src/app/_modals/login-modal/login-modal.component.ts
index c86c269a..e1535a25 100644
--- a/frontend/src/app/_modals/login-modal/login-modal.component.ts
+++ b/frontend/src/app/_modals/login-modal/login-modal.component.ts
@@ -4,6 +4,7 @@ import { CookieService } from 'ngx-cookie-service';
import { AuthService } from 'src/app/_services/auth.service';
import { UserInfoService } from 'src/app/_services/user-info.service';
import shared from '../../Shared';
+import {AfterViewInit, ElementRef} from '@angular/core';
@Component({
selector: 'app-login-modal',
@@ -12,6 +13,8 @@ import shared from '../../Shared';
})
export class LoginModalComponent implements OnInit {
+ @ViewChild('closeButton') closeButton?: ElementRef;
+
username: string = '';
password: string = '';
@@ -38,7 +41,7 @@ export class LoginModalComponent implements OnInit {
}
else {
this.authService.authenticate(response);
- (<HTMLSelectElement>document.getElementById('closeButton')).click();
+ (<HTMLSelectElement>this.closeButton?.nativeElement).click();
this.userInfoService.getUserInfo().subscribe((response) => {
shared.photoId = response.photoId;
});
diff --git a/frontend/src/app/_modals/register-modal/register-modal.component.ts b/frontend/src/app/_modals/register-modal/register-modal.component.ts
index 13ef7eba..05888589 100644
--- a/frontend/src/app/_modals/register-modal/register-modal.component.ts
+++ b/frontend/src/app/_modals/register-modal/register-modal.component.ts
@@ -1,6 +1,9 @@
import { Component, OnInit } from '@angular/core';
import { AuthService } from 'src/app/_services/auth.service';
import User from 'src/app/_data/User';
+import { DOCUMENT } from '@angular/common';
+import { Inject } from '@angular/core';
+import shared from 'src/app/Shared';
@Component({
selector: 'app-register-modal',
@@ -29,8 +32,11 @@ export class RegisterModalComponent implements OnInit {
pattEmail: RegExp = /^[a-zA-Z0-9]+([\.\-\+][a-zA-Z0-9]+)*\@([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}$/;
pattPassword: RegExp = /.{6,30}$/;
+ shared = shared;
+
constructor(
- private authService: AuthService
+ private authService: AuthService,
+ @Inject(DOCUMENT) document: Document
) { }
ngOnInit(): void {
@@ -149,11 +155,11 @@ export class RegisterModalComponent implements OnInit {
}, (error) => console.warn(error));
}
else if (response == 'Email Already Exists') {
- alert('Nalog sa unetim email-om već postoji!');
+ shared.openDialog("Greška!", "Nalog sa unetim email-om već postoji!");
(<HTMLSelectElement>document.getElementById('email')).focus();
}
else if (response == 'Username Already Exists') {
- alert('Nalog sa unetim korisničkim imenom već postoji!');
+ shared.openDialog("Greška!", "Nalog sa unetim korisničkim imenom već postoji!");
(<HTMLSelectElement>document.getElementById('username-register')).focus();
}
}
diff --git a/frontend/src/app/_pages/add-model/add-model.component.css b/frontend/src/app/_pages/add-model/add-model.component.css
index 6d961287..7f05af0f 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.css
+++ b/frontend/src/app/_pages/add-model/add-model.component.css
@@ -32,4 +32,11 @@
}
ul li:hover {
background-color: lightblue;
-} \ No newline at end of file
+}
+
+#divInputs {
+ margin-left: 20px;
+}
+#divOutputs {
+ margin-left: 20px;
+}
diff --git a/frontend/src/app/_pages/add-model/add-model.component.html b/frontend/src/app/_pages/add-model/add-model.component.html
index 3d5fd7b1..179e9aea 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.html
+++ b/frontend/src/app/_pages/add-model/add-model.component.html
@@ -25,42 +25,8 @@
<div class="py-3 pr-5 justify-content-center">
- <div class="col-12 d-flex my-5">
- <h2 class="">Izvor podataka:</h2>
- <div class="col-1">
- </div>
- <button type="button" id="btnMyDataset" class="btn" (click)="viewMyDatasetsForm()"
- [ngClass]="{'btnType1': showMyDatasets, 'btnType2': !showMyDatasets}">
- Izaberite dataset iz kolekcije
- </button>
- <h3 class="mt-3 mx-3">ili</h3>
- <button type="button" id="btnNewDataset" class="btn" (click)="viewNewDatasetForm()"
- [ngClass]="{'btnType1': !showMyDatasets, 'btnType2': showMyDatasets}">
- Dodajte novi dataset
- </button>
- </div>
- <div class="px-5 my-2">
- <input *ngIf="showMyDatasets" type="text" class="form-control" placeholder="Pretraga"
- [(ngModel)]="term">
- </div>
- <div class="px-5">
- <div *ngIf="showMyDatasets" class="overflow-auto" style="max-height: 500px;">
- <ul class="list-group">
- <li class="list-group-item p-3" *ngFor="let dataset of myDatasets|filter:term"
- [ngClass]="{'selectedDatasetClass': this.selectedDataset == dataset}">
- <app-item-dataset name="usersDataset" [dataset]="dataset"
- (click)="selectThisDataset(dataset);"></app-item-dataset>
- </li>
- </ul>
- </div>
- </div>
+ <app-dataset-load (selectedDatasetChangeEvent)="datasetHasChanged($event)"></app-dataset-load>
- <app-dataset-load [style]="(showMyDatasets)?'display:none;visibility:hidden;':''" id="dataset"
- (loaded)="scrollToNextForm(); datasetLoaded = true; selectedDataset = datasetLoadComponent?.dataset; datasetFile = datasetLoadComponent?.csvRecords; datasetHasHeader = datasetLoadComponent?.dataset!.hasHeader">
- </app-dataset-load>
- <div class="px-5 mt-5">
- <app-datatable [data]="datasetFile" [hasHeader]="datasetHasHeader"></app-datatable>
- </div>
</div>
<span id="selectInAndOuts"></span>
<div
diff --git a/frontend/src/app/_pages/add-model/add-model.component.ts b/frontend/src/app/_pages/add-model/add-model.component.ts
index d47b24e6..ba8f7d01 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.ts
+++ b/frontend/src/app/_pages/add-model/add-model.component.ts
@@ -5,9 +5,7 @@ import { DatasetLoadComponent } from 'src/app/_elements/dataset-load/dataset-loa
import { ModelsService } from 'src/app/_services/models.service';
import shared from 'src/app/Shared';
import Dataset from 'src/app/_data/Dataset';
-import { DatatableComponent } from 'src/app/_elements/datatable/datatable.component';
import { DatasetsService } from 'src/app/_services/datasets.service';
-import { NgxCsvParser } from 'ngx-csv-parser';
import { CsvParseService } from 'src/app/_services/csv-parse.service';
@@ -18,11 +16,6 @@ import { CsvParseService } from 'src/app/_services/csv-parse.service';
})
export class AddModelComponent implements OnInit {
- @ViewChild(DatasetLoadComponent) datasetLoadComponent?: DatasetLoadComponent;
- @ViewChild(DatatableComponent) datatable?: DatatableComponent;
- datasetLoaded: boolean = false;
- selectedDatasetLoaded: boolean = false;
-
newModel: Model;
ProblemType = ProblemType;
@@ -71,8 +64,13 @@ export class AddModelComponent implements OnInit {
(<HTMLInputElement>document.getElementById("btnMyDataset")).focus();
}
+ datasetHasChanged(selectedDataset: Dataset) {
+ this.selectedDataset = selectedDataset;
+ this.resetCbsAndRbs();
+ this.refreshThreeNullValueRadioOptions();
+ }
- viewMyDatasetsForm() {
+ /*viewMyDatasetsForm() {
this.showMyDatasets = true;
this.resetSelectedDataset();
//this.datasetLoaded = false;
@@ -82,7 +80,7 @@ export class AddModelComponent implements OnInit {
this.showMyDatasets = false;
this.resetSelectedDataset();
this.resetCbsAndRbs();
- }
+ }*/
addModel() {
if (!this.showMyDatasets)
@@ -174,7 +172,7 @@ export class AddModelComponent implements OnInit {
this.models.addModel(this.newModel).subscribe((response) => {
callback(response);
}, (error) => {
- alert("Model sa unetim nazivom već postoji u Vašoj kolekciji.\nPromenite naziv modela i nastavite sa kreiranim datasetom.");
+ shared.openDialog("Neuspeo pokušaj!", "Model sa unetim nazivom već postoji u Vašoj kolekciji. Promenite naziv modela i nastavite sa kreiranim datasetom.");
});
}
}
@@ -217,47 +215,47 @@ export class AddModelComponent implements OnInit {
return false;
}
else if (this.newModel.inputColumns.length == 0) {
- alert("Molimo Vas da izaberete ulaznu kolonu/kolone za mrežu.");
+ shared.openDialog("Neuspeo pokušaj!", "Molimo Vas da izaberete ulaznu kolonu/kolone za mrežu.");
return false;
}
else if (this.newModel.columnToPredict == '') {
- alert("Molimo Vas da izaberete izlaznu kolonu za mrežu.");
+ shared.openDialog("Neuspeo pokušaj!", "Molimo Vas da izaberete izlaznu kolonu za mrežu.");
return false;
}
for (let i = 0; i < this.newModel.inputColumns.length; i++) {
if (this.newModel.inputColumns[i] == this.newModel.columnToPredict) {
let colName = this.newModel.columnToPredict;
- alert("Izabrali ste istu kolonu (" + colName + ") kao ulaznu i izlaznu iz mreže. Korigujte izbor.");
+ shared.openDialog("Neuspeo pokušaj!", "Izabrali ste istu kolonu (" + colName + ") kao ulaznu i izlaznu iz mreže. Korigujte izbor.");
return false;
}
}
return true;*/
}
- selectThisDataset(dataset: Dataset) {
+ /*selectThisDataset(dataset: Dataset) {
this.selectedDataset = dataset;
- this.selectedDatasetLoaded = false;
+ //this.selectedDatasetLoaded = false;
this.existingDatasetSelected = true;
this.datasetHasHeader = this.selectedDataset.hasHeader;
this.datasets.getDatasetFile(dataset.fileId).subscribe((file: string | undefined) => {
if (file) {
this.datasetFile = this.csv.csvToArray(file, (dataset.delimiter == "razmak") ? " " : (dataset.delimiter == "") ? "," : dataset.delimiter);
- /*for (let i = this.datasetFile.length - 1; i >= 0; i--) { //moguce da je vise redova na kraju fajla prazno i sl.
- if (this.datasetFile[i].length != this.datasetFile[0].length)
- this.datasetFile[i].pop();
- else
- break; //nema potrebe dalje
- }*/
+ //for (let i = this.datasetFile.length - 1; i >= 0; i--) { //moguce da je vise redova na kraju fajla prazno i sl.
+ //if (this.datasetFile[i].length != this.datasetFile[0].length)
+ //this.datasetFile[i].pop();
+ //else
+ // break; //nema potrebe dalje
+ //}
//console.log(this.datasetFile);
this.resetCbsAndRbs();
this.refreshThreeNullValueRadioOptions();
- this.selectedDatasetLoaded = true;
+ //this.selectedDatasetLoaded = true;
this.scrollToNextForm();
}
});
//this.datasetHasHeader = false;
- }
+ }*/
scrollToNextForm() {
(<HTMLSelectElement>document.getElementById("selectInAndOuts")).scrollIntoView({
@@ -267,7 +265,7 @@ export class AddModelComponent implements OnInit {
});
}
- resetSelectedDataset(): boolean {
+ /*resetSelectedDataset(): boolean {
const temp = this.selectedDataset;
this.selectedDataset = this.otherDataset;
this.otherDataset = temp;
@@ -275,7 +273,7 @@ export class AddModelComponent implements OnInit {
this.datasetFile = this.otherDatasetFile;
this.otherDatasetFile = tempFile;
return true;
- }
+ }*/
resetCbsAndRbs(): boolean {
this.uncheckRbs();
this.checkAllCbs();
@@ -345,7 +343,7 @@ export class AddModelComponent implements OnInit {
let colIndex = this.findColIndexByName(colName);
let sumOfNulls = 0;
- let startValue = (this.datasetLoadComponent?.dataset.hasHeader) ? 1 : 0;
+ let startValue = (this.selectedDataset!.hasHeader) ? 1 : 0;
for (let i = startValue; i < this.datasetFile.length; i++) {
if (this.datasetFile[i][colIndex] == "" || this.datasetFile[i][colIndex] == undefined)
++sumOfNulls;
@@ -360,7 +358,7 @@ export class AddModelComponent implements OnInit {
let sum = 0;
let n = 0;
- let startValue = (this.datasetLoadComponent?.dataset.hasHeader) ? 1 : 0;
+ let startValue = (this.selectedDataset!.hasHeader) ? 1 : 0;
for (let i = startValue; i < this.datasetFile.length; i++)
if (this.datasetFile[i][colIndex] != '') {
sum += Number(this.datasetFile[i][colIndex]);
@@ -467,9 +465,13 @@ export class AddModelComponent implements OnInit {
arrayColumn = (arr: any[][], n: number) => [...this.dropEmptyString(new Set(arr.map(x => x[n])))];
- dropEmptyString(set: Set<string>): Set<string> {
+ dropEmptyString(set: Set<any>): Set<string> {
if (set.has(""))
set.delete("");
+ if (set.has(null))
+ set.delete(null);
+ if (set.has(undefined))
+ set.delete(undefined);
return set;
}
diff --git a/frontend/src/app/_pages/browse-predictors/browse-predictors.component.html b/frontend/src/app/_pages/browse-predictors/browse-predictors.component.html
index a4ab6e2c..27e06884 100644
--- a/frontend/src/app/_pages/browse-predictors/browse-predictors.component.html
+++ b/frontend/src/app/_pages/browse-predictors/browse-predictors.component.html
@@ -5,7 +5,9 @@
<div class="row mt-3 mb-2 d-flex justify-content-center">
<div class="col-sm-6" style="margin-bottom: 10px;">
+ <p class="glyphicon glyphicon-search"></p>
<input type="text" class="form-control" placeholder="Pretraga" [(ngModel)]="term">
+
</div>
<div class="row">
@@ -14,7 +16,7 @@
<div class="card-body">
<h3 class="card-title"><b>{{predictor.name}}</b></h3>
<p class="card-text">{{predictor.description}}</p>
- <a class="btn btn-primary" (click)="openPredictor(predictor._id)">Otvori</a>
+ <a class="btn btn-primary" (click)="openPredictor(predictor._id)">Iskoristi</a>
</div>
<div class="card-footer text-muted">
Kreirao: {{predictor.username}} <br>
diff --git a/frontend/src/app/_pages/browse-predictors/browse-predictors.component.ts b/frontend/src/app/_pages/browse-predictors/browse-predictors.component.ts
index 4f96fc36..891b3cab 100644
--- a/frontend/src/app/_pages/browse-predictors/browse-predictors.component.ts
+++ b/frontend/src/app/_pages/browse-predictors/browse-predictors.component.ts
@@ -20,7 +20,7 @@ export class BrowsePredictorsComponent implements OnInit {
ngOnInit(): void {
}
openPredictor(id:string):void{
- this.router.navigateByUrl('/predict?id='+id);
+ this.router.navigate(['predict/'+id]);
};
}
diff --git a/frontend/src/app/_pages/filter-datasets/filter-datasets.component.ts b/frontend/src/app/_pages/filter-datasets/filter-datasets.component.ts
index b75decf2..fc146046 100644
--- a/frontend/src/app/_pages/filter-datasets/filter-datasets.component.ts
+++ b/frontend/src/app/_pages/filter-datasets/filter-datasets.component.ts
@@ -4,6 +4,7 @@ import Dataset from 'src/app/_data/Dataset';
import {Router} from '@angular/router'
import { JwtHelperService } from '@auth0/angular-jwt';
import { CookieService } from 'ngx-cookie-service';
+import shared from 'src/app/Shared';
@Component({
selector: 'app-filter-datasets',
@@ -12,6 +13,7 @@ import { CookieService } from 'ngx-cookie-service';
})
export class FilterDatasetsComponent implements OnInit {
+ shared = shared;
publicDatasets?: Dataset[];
term: string = "";
constructor(private datasets: DatasetsService,private router:Router, private cookie: CookieService) {
@@ -37,11 +39,9 @@ export class FilterDatasetsComponent implements OnInit {
if(name!=null && name!="")
this.datasets.addDataset(newDataset).subscribe((response:string)=>{
console.log(response);
- alert("Uspenso ste dodali dataset sa imenom "+newDataset.name);
+ shared.openDialog("Obaveštenje", "Uspešno ste dodali dataset sa nazivom " + newDataset.name);
},(error)=>{
- alert("Vec imate dataset sa istim imenom molim vas unesite drugo ime");
-
-
+ shared.openDialog("Obaveštenje", "U svojoj kolekciji već imate dataset sa ovim imenom. Molimo Vas da unesete drugo ime.");
});
};
diff --git a/frontend/src/app/_pages/my-datasets/my-datasets.component.html b/frontend/src/app/_pages/my-datasets/my-datasets.component.html
index 623b9ac8..2e17201d 100644
--- a/frontend/src/app/_pages/my-datasets/my-datasets.component.html
+++ b/frontend/src/app/_pages/my-datasets/my-datasets.component.html
@@ -1,5 +1,37 @@
-<ul class="list-group my-2">
- <li class="list-group-item" *ngFor="let dataset of myDatasets">
- <app-item-dataset [dataset]="dataset"></app-item-dataset>
- </li>
-</ul> \ No newline at end of file
+<div id="wrapper">
+ <div id="container" class="container p-5" style="background-color: white; min-height: 100%;">
+ <div class="row mt-3 mb-2 d-flex justify-content-center">
+
+ <div class="col-sm-6" style="margin-bottom: 10px;">
+ </div>
+
+ <div class="row">
+ <div class="col-sm-4" style="margin-bottom: 10px;" *ngFor="let dataset of myDatasets">
+ <app-item-dataset [dataset]="dataset"></app-item-dataset>
+
+ <div class="panel-footer row"><!-- panel-footer -->
+ <div class="col-xs-6 text-center">
+ <div>
+ <button type="button" class="btn btn-default btn-lg" mat-raised-button color="primary" (click)="deleteThisDataset(dataset)">Obriši
+ <span class="glyphicon glyphicon-chevron-right"></span>
+ </button>
+ </div>
+ </div>
+ </div><!-- end panel-footer -->
+
+
+
+ </div>
+ </div>
+ <div class="text-center" *ngIf="this.myDatasets.length == 0" >
+ <h2>Nema rezultata</h2>
+ </div>
+ </div>
+
+ </div>
+
+
+
+
+
+ </div>
diff --git a/frontend/src/app/_pages/my-datasets/my-datasets.component.ts b/frontend/src/app/_pages/my-datasets/my-datasets.component.ts
index 13b0c47b..eb5e32f8 100644
--- a/frontend/src/app/_pages/my-datasets/my-datasets.component.ts
+++ b/frontend/src/app/_pages/my-datasets/my-datasets.component.ts
@@ -1,5 +1,9 @@
import { Component, OnInit } from '@angular/core';
+import {Router} from '@angular/router';
+import { DatasetsService } from 'src/app/_services/datasets.service';
import Dataset from 'src/app/_data/Dataset';
+import { JwtHelperService } from '@auth0/angular-jwt';
+import { CookieService } from 'ngx-cookie-service';
@Component({
selector: 'app-my-datasets',
@@ -7,18 +11,47 @@ import Dataset from 'src/app/_data/Dataset';
styleUrls: ['./my-datasets.component.css']
})
export class MyDatasetsComponent implements OnInit {
+ myDatasets: Dataset[] = [];
- myDatasets?: Dataset[];
+ constructor(private datasetsS : DatasetsService) {
- constructor() {
- this.myDatasets = [
- new Dataset('Titanik', 'Opis titanik', ['K1', 'K2', 'K3', 'Ime', 'Preziveli']),
- new Dataset('Neki drugi set', 'opis', ['a', 'b', 'c']),
- new Dataset('Treci set', 'opis', ['a', 'b', 'c'])
- ];
- }
+
+
+ }
ngOnInit(): void {
+ this.datasetsS.getMyDatasets();
+
+ }
+/*
+ editModel(): void{
+ this.modelsS.editModel().subscribe(m => {
+ this.myModel = m;
+
+ })
+ }
+*/
+
+deleteThisDataset(dataset: Dataset): void{
+ console.log("OK");
+ this.datasetsS.deleteDataset(dataset).subscribe((response) => {
+ console.log("OBRISANO JE", response);
+ //na kraju uspesnog
+ this.getAllMyDatasets();
+ }, (error) =>{
+ if (error.error == "Dataset with name = {name} deleted") {
+ alert("Greška pri brisanju dataseta!");
+ }
+ });
+
+}
+
+ getAllMyDatasets(): void{
+ this.datasetsS.getMyDatasets().subscribe(m => {
+
+ this.myDatasets = m;
+ console.log(this.myDatasets);
+ });
}
}
diff --git a/frontend/src/app/_pages/my-models/my-models.component.html b/frontend/src/app/_pages/my-models/my-models.component.html
index e2533d89..4aebc1f2 100644
--- a/frontend/src/app/_pages/my-models/my-models.component.html
+++ b/frontend/src/app/_pages/my-models/my-models.component.html
@@ -8,12 +8,22 @@
<div class="row">
<div class="col-sm-4" style="margin-bottom: 10px;" *ngFor="let model of myModels">
<app-item-model [model]="model"></app-item-model>
- <app-annvisual align-items-center [model]="model" style="width: 100%;"></app-annvisual>
- <div style="width: 25%; margin: auto;">
- <button mat-raised-button color="primary" (click)="deleteThisModel(model)" style="margin-top: 3px; width: 100%;">Obriši</button>
-
- <button mat-raised-button color="primary" (click)="deleteThisModel(model)" style="margin-top: 3px; width: 100%;">Koristi</button>
- </div>
+
+ <div class="panel-footer row"><!-- panel-footer -->
+ <div class="col-xs-6 text-center">
+ <div>
+ <button type="button" class="btn btn-default btn-lg" (click)="deleteThisModel(model)" mat-raised-button color="primary">Koristi
+ <span class="glyphicon glyphicon-search"></span>
+ </button>
+ <button type="button" class="btn btn-default btn-lg" mat-raised-button color="primary" (click)="deleteThisModel(model)">Obriši
+ <span class="glyphicon glyphicon-chevron-right"></span>
+ </button>
+ </div>
+ </div>
+ </div><!-- end panel-footer -->
+
+
+
</div>
</div>
<div class="text-center" *ngIf="this.myModels.length == 0" >
diff --git a/frontend/src/app/_pages/my-models/my-models.component.ts b/frontend/src/app/_pages/my-models/my-models.component.ts
index bd6b0a2b..6086b1b1 100644
--- a/frontend/src/app/_pages/my-models/my-models.component.ts
+++ b/frontend/src/app/_pages/my-models/my-models.component.ts
@@ -1,4 +1,5 @@
import { Component, OnInit } from '@angular/core';
+import shared from 'src/app/Shared';
import Model from 'src/app/_data/Model';
import { ModelsService } from 'src/app/_services/models.service';
@@ -38,7 +39,7 @@ deleteThisModel(model: Model): void{
this.getAllMyModels();
}, (error) =>{
if (error.error == "Model with name = {name} deleted") {
- alert("Greška pri brisanju modela!");
+ shared.openDialog("Obaveštenje", "Greška prilikom brisanja modela.");
}
});
diff --git a/frontend/src/app/_pages/my-predictors/my-predictors.component.html b/frontend/src/app/_pages/my-predictors/my-predictors.component.html
index d739f561..3746d35e 100644
--- a/frontend/src/app/_pages/my-predictors/my-predictors.component.html
+++ b/frontend/src/app/_pages/my-predictors/my-predictors.component.html
@@ -7,7 +7,7 @@
<app-item-predictor [predictor]="predictor"></app-item-predictor>
</div>
<div>
- <button (click)="delete()" mat-raised-button color="warn" style="min-width: 15rem;float: right" ><mat-icon>delete</mat-icon></button>
+ <button (click)="delete(predictor)" mat-raised-button color="warn" style="min-width: 15rem;float: right" ><mat-icon>delete</mat-icon></button>
</div>
</div>
diff --git a/frontend/src/app/_pages/my-predictors/my-predictors.component.ts b/frontend/src/app/_pages/my-predictors/my-predictors.component.ts
index 58daa44f..13cfdab2 100644
--- a/frontend/src/app/_pages/my-predictors/my-predictors.component.ts
+++ b/frontend/src/app/_pages/my-predictors/my-predictors.component.ts
@@ -1,5 +1,6 @@
import { Component, OnInit } from '@angular/core';
import Predictor from 'src/app/_data/Predictor';
+import { PredictorsService } from 'src/app/_services/predictors.service';
@Component({
selector: 'app-my-predictors',
@@ -7,22 +8,38 @@ import Predictor from 'src/app/_data/Predictor';
styleUrls: ['./my-predictors.component.css']
})
export class MyPredictorsComponent implements OnInit {
- predictors: Predictor[];
- constructor() {
- this.predictors = [
- new Predictor('Titanik', 'Opis titanik', ['K1', 'K2', 'K3', 'Ime', 'Preziveli'],'Preziveli'),
- new Predictor('Neki drugi set', 'opis', ['a', 'b', 'c'],'c'),
- new Predictor('Preživeli', 'Za uneto ime osobe, predvidja da li je ta osoba preživela ili ne.', ['Ime'], 'OsobaJePreživela'),
- new Predictor('Drugi model', 'Lorem ipsum dolor sir amet', ['kruska'], 'jagoda')];
+ predictors: Predictor[] = [];
+ constructor(private predictorsS : PredictorsService) {
}
ngOnInit(): void {
+ this.getAllMyPredictors();
+
}
- delete(){
- confirm("IZABRANI MODEL ĆE BITI IZBRISAN")
+ delete(predictor: Predictor){
+ if(window.confirm("IZABRANI MODEL ĆE BITI IZBRISAN"))
+ {
+ this.predictorsS.deletePredictor(predictor).subscribe((response) => {
+ console.log("OBRISANOOO JEE", response);
+ //na kraju uspesnog
+ this.getAllMyPredictors();
+ }, (error) =>{
+ if (error.error == "Predictor with name = {name} deleted") {
+ alert("Greška pri brisanju modela!");
+ }
+ });
+ }
+
}
-
+
+ getAllMyPredictors(): void{
+ this.predictorsS.getMyPredictors().subscribe(m => {
+
+ this.predictors = m;
+ console.log(this.predictors);
+ });
+ }
}
diff --git a/frontend/src/app/_pages/predict/predict.component.css b/frontend/src/app/_pages/predict/predict.component.css
index e69de29b..dab059a5 100644
--- a/frontend/src/app/_pages/predict/predict.component.css
+++ b/frontend/src/app/_pages/predict/predict.component.css
@@ -0,0 +1,3 @@
+#wrapper {
+ color: #003459;
+} \ No newline at end of file
diff --git a/frontend/src/app/_pages/predict/predict.component.html b/frontend/src/app/_pages/predict/predict.component.html
index fe17c96d..13afa8e4 100644
--- a/frontend/src/app/_pages/predict/predict.component.html
+++ b/frontend/src/app/_pages/predict/predict.component.html
@@ -18,8 +18,25 @@
<div>
<label for="output" class="col-sm-5 col-form-label">Opis prediktora: <b>{{predictor.description}}</b></label>
</div>
+
+
+ </div>
+ <br>
+ <label for="type" class="form-check-label" ><b>Informacije o prediktoru</b></label>
+ <div class="col-5 mt-2">
+ <label for="type" class="form-check-label" >Prediktor {{predictor.isPublic?"je":"nije"}} javni.</label>
+ </div>
+ <div class="col-5 mt-2">
+ <label for="type" class="form-check-label" >Prediktor {{predictor.accessibleByLink?"je":"nije"}} dostupan za deljenje.</label>
+ </div>
+ <br>
+ <div class="col-2">
+ <label for="dateCreated" class="col-form-label">Datum:</label>
+ <input type="text" class="form-control-plaintext" id="dateCreated" placeholder="--/--/--"
+ value="{{predictor.dateCreated | date: 'dd/MM/yyyy'}}" readonly>
</div>
+
<br>
<div >
<!--input -->
@@ -28,44 +45,20 @@
<div *ngIf="predictor" class="form-group row mt-3 mb-2 d-flex justify-content-left">
<div *ngFor="let input of predictor.inputs; let i = index">
<label for="{{input}}" class="col-sm-2 col-form-label"><b>{{input}}</b></label>
- <input name="{{input}}" type="text" [(ngModel)]="inputs[i]" >
+ <input name="{{input}}" type="text" [(ngModel)]="inputs[i].value" >
</div>
</div>
</div>
-
+ <br>
</div>
<div>
<label for="output" class="col-sm-2 col-form-label">Izlaz: <b>{{predictor.output}}</b></label>
</div>
- <br>
- <br>
- <br>
- <br>
- <br>
-
- <div class="col-5 mt-2">
- <label for="type" class="form-check-label">Da li je prediktor javan?</label>
- <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="predictor.isPublic"
- type="checkbox" value="" >
- </div>
- <div class="col-5 mt-2">
- <label for="type" class="form-check-label">Da li je dostupan za deljenje?</label>
- <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="predictor.accessibleByLink"
- type="checkbox" value="" >
- </div>
- <br>
- <div class="col-2">
- <label for="dateCreated" class="col-form-label">Datum:</label>
- <input type="text" class="form-control-plaintext" id="dateCreated" placeholder="--/--/--"
- value="{{predictor.dateCreated | date: 'dd/MM/yyyy'}}" readonly>
- </div>
-
- <br><br>
<div class="form-group row mt-5 mb-3">
<div class="col"></div>
<button class="btn btn-lg col-4" style="background-color:#003459; color:white;"
diff --git a/frontend/src/app/_pages/predict/predict.component.ts b/frontend/src/app/_pages/predict/predict.component.ts
index 3f431fff..1c1c7425 100644
--- a/frontend/src/app/_pages/predict/predict.component.ts
+++ b/frontend/src/app/_pages/predict/predict.component.ts
@@ -2,6 +2,7 @@ import { Component, OnInit } from '@angular/core';
import { ActivatedRoute } from '@angular/router';
import Predictor from 'src/app/_data/Predictor';
import { PredictorsService } from 'src/app/_services/predictors.service';
+import shared from 'src/app/Shared';
@Component({
selector: 'app-predict',
@@ -10,7 +11,8 @@ import { PredictorsService } from 'src/app/_services/predictors.service';
})
export class PredictComponent implements OnInit {
- inputs : String[] = [];
+ inputs : Column[] = [];
+
predictor:Predictor;
constructor(private predictS : PredictorsService, private route: ActivatedRoute) {
@@ -22,6 +24,7 @@ export class PredictComponent implements OnInit {
this.predictS.getPredictor(url["id"]).subscribe(p => {
this.predictor = p;
+ this.predictor.inputs.forEach((p,index)=> this.inputs[index] = new Column(p, ""));
console.log(this.predictor);
})
});
@@ -29,9 +32,16 @@ export class PredictComponent implements OnInit {
usePredictor(): void{
this.predictS.usePredictor(this.predictor, this.inputs).subscribe(p => {
-
- alert("Uspesno ste poslali preditor!");
+ shared.openDialog("Obaveštenje", "Prediktor je uspešno poslat na probu."); //pisalo je "na treniranje" ??
})
console.log(this.inputs);
}
}
+
+
+export class Column {
+ constructor(
+ public name : string,
+ public value : (number | string)){
+ }
+} \ No newline at end of file
diff --git a/frontend/src/app/_pages/profile/profile.component.html b/frontend/src/app/_pages/profile/profile.component.html
index d082a003..557d69fd 100644
--- a/frontend/src/app/_pages/profile/profile.component.html
+++ b/frontend/src/app/_pages/profile/profile.component.html
@@ -30,12 +30,14 @@
<label class="small mb-1" for="inputPassword">Važeća lozinka</label>
<input class="form-control" id="inputPassword" name="inputPassword" type="password" [(ngModel)]="this.oldPass" placeholder="Trenutna lozinka">
<small *ngIf="wrongPassBool" class="form-text text-danger">Neispravna lozinka.</small>
+ <small *ngIf="wrongOldPassBool" class="form-text text-danger">Pogrešan format.</small>
</div>
<!-- Form Group (new password)-->
<div class="col-md-6">
<label class="small mb-1" for="inputNewPassword">Nova lozinka</label>
<input class="form-control" id="inputNewPassword" name="inputNewPassword" type="password" [(ngModel)]="this.newPass1" placeholder="Ukucaj novu lozinku">
<small *ngIf="wrongNewPassBool" class="form-text text-danger">Lozinke se ne podudaraju.</small>
+ <small *ngIf="wrongNewPass1Bool" class="form-text text-danger">Pogrešan format.</small>
</div>
</div>
@@ -52,6 +54,7 @@
<label class="small mb-1" for="inputNewPasswordAgain">Ponovo nova lozinka</label>
<input class="form-control" id="inputNewPasswordAgain" name="inputNewPasswordAgain" type="password" [(ngModel)]="this.newPass2" placeholder="Ukucaj novu lozinku">
<small *ngIf="wrongNewPassBool" class="form-text text-danger">Lozinke se ne podudaraju.</small>
+ <small *ngIf="wrongNewPass2Bool" class="form-text text-danger">Pogrešan format.</small>
</div>
</div>
</div>
@@ -73,11 +76,13 @@
<div class="col-md-6">
<label class="small mb-1" for="inputUsername">Korisničko ime (kako će ostali korisnici videti tvoje ime)</label>
<input class="form-control" id="inputUsername" name="inputUsername" type="text" [(ngModel)]="this.username">
+ <small *ngIf="wrongUsernameBool" class="form-text text-danger">Pogrešan format.</small>
</div>
<!-- Form Group (email address)-->
<div class="col-md-6">
<label class="small mb-1" for="inputEmailAddress">Email adresa</label>
<input class="form-control" id="inputEmailAddress" name="inputEmailAddress" type="email" [(ngModel)]="this.email">
+ <small *ngIf="wrongEmailBool" class="form-text text-danger">Pogrešan format.</small>
</div>
</div>
@@ -87,11 +92,13 @@
<div class="col-md-6">
<label class="small mb-1" for="inputFirstName">Ime</label>
<input class="form-control" id="inputFirstName" name="inputFirstName" type="text" [(ngModel)]="this.firstName">
+ <small *ngIf="wrongFirstNameBool" class="form-text text-danger">Pogrešan format.</small>
</div>
<!-- Form Group (last name)-->
<div class="col-md-6">
<label class="small mb-1" for="inputLastName">Prezime</label>
<input class="form-control" id="inputLastName" name="inputLastName" type="text" [(ngModel)]="this.lastName">
+ <small *ngIf="wrongLastNameBool" class="form-text text-danger">Pogrešan format.</small>
</div>
</div>
diff --git a/frontend/src/app/_pages/profile/profile.component.ts b/frontend/src/app/_pages/profile/profile.component.ts
index 3e9a0d11..d055fad3 100644
--- a/frontend/src/app/_pages/profile/profile.component.ts
+++ b/frontend/src/app/_pages/profile/profile.component.ts
@@ -6,6 +6,7 @@ import { Router } from '@angular/router';
import { PICTURES } from 'src/app/_data/ProfilePictures';
import { Picture } from 'src/app/_data/ProfilePictures';
import shared from '../../Shared';
+import { share } from 'rxjs';
@Component({
@@ -71,6 +72,9 @@ export class ProfileComponent implements OnInit {
}
saveInfoChanges() {
+ if (!(this.checkInfoChanges())) //nije prosao regex
+ return;
+
let editedUser: User = {
_id: this.user._id,
username: this.username,
@@ -84,18 +88,20 @@ export class ProfileComponent implements OnInit {
this.userInfoService.changeUserInfo(editedUser).subscribe((response: any) =>{
if (this.user.username != editedUser.username) { //promenio username, ide logout
this.user = editedUser;
- alert("Nakon promene korisničkog imena, moraćete ponovo da se ulogujete.");
+ this.resetInfo();
+ shared.openDialog("Obaveštenje", "Nakon promene korisničkog imena, moraćete ponovo da se ulogujete.");
this.authService.logOut();
this.router.navigate(['']);
return;
}
+ shared.openDialog("Obaveštenje", "Podaci su uspešno promenjeni.");
this.user = editedUser;
console.log(this.user);
this.resetInfo();
}, (error: any) =>{
if (error.error == "Username already exists!") {
- alert("Ukucano korisničko ime je već zauzeto!\nIzaberite neko drugo.");
- (<HTMLSelectElement>document.getElementById("inputUsername")).focus();
+ shared.openDialog("Obaveštenje", "Ukucano korisničko ime je već zauzeto! Izaberite neko drugo.");
+ //(<HTMLSelectElement>document.getElementById("inputUsername")).focus();
//poruka obavestenja ispod inputa
this.resetInfo();
}
@@ -103,38 +109,41 @@ export class ProfileComponent implements OnInit {
}
savePasswordChanges() {
+ this.wrongPassBool = false;
+ this.wrongNewPassBool = false;
+
+ if (!(this.checkPasswordChanges())) //nije prosao regex
+ return;
+
if (this.newPass1 == '' && this.newPass2 == '') //ne zeli da promeni lozinku
return;
- console.log("zeli da promeni lozinku");
+ //console.log("zeli da promeni lozinku");
if (this.newPass1 != this.newPass2) { //netacno ponovio novu lozinku
this.wrongNewPassBool = true;
this.resetNewPassInputs();
- console.log("Netacno ponovljena lozinka");
+ //console.log("Netacno ponovljena lozinka");
return;
}
- this.wrongPassBool = false;
- this.wrongNewPassBool = false;
-
let passwordArray: string[] = [this.oldPass, this.newPass1];
this.userInfoService.changeUserPassword(passwordArray).subscribe((response: any) => {
- console.log("PROMENIO LOZINKU");
+ //console.log("PROMENIO LOZINKU");
this.resetNewPassInputs();
- alert("Nakon promene lozinke, moraćete ponovo da se ulogujete.");
+ shared.openDialog("Obaveštenje", "Nakon promene lozinke, moraćete ponovo da se ulogujete.");
this.authService.logOut();
this.router.navigate(['']);
}, (error: any) => {
console.log("error poruka: ", error.error);
if (error.error == 'Wrong old password!') {
this.wrongPassBool = true;
- (<HTMLSelectElement>document.getElementById("inputPassword")).focus();
+ //(<HTMLSelectElement>document.getElementById("inputPassword")).focus();
return;
}
else if (error.error == 'Identical password!') {
- alert("Stara i nova lozinka su identične.");
+ shared.openDialog("Obaveštenje", "Stara i nova lozinka su identične.");
this.resetNewPassInputs();
- (<HTMLSelectElement>document.getElementById("inputNewPassword")).focus();
+ //(<HTMLSelectElement>document.getElementById("inputNewPassword")).focus();
return;
}
});
@@ -161,5 +170,95 @@ export class ProfileComponent implements OnInit {
shared.photoId = this.photoId;
}
+ checkPasswordChanges() : boolean {
+ this.passwordValidation();
+
+ if (!(this.wrongOldPassBool || this.wrongNewPass1Bool || this.wrongNewPass2Bool))
+ return true;
+ return false;
+ }
+ checkInfoChanges() : boolean {
+ this.firstName = this.firstName.trim();
+ this.lastName = this.lastName.trim();
+ this.username = this.username.trim();
+ this.email = this.email.trim();
+
+ this.firstNameValidation();
+ this.lastNameValidation();
+ this.usernameValidation();
+ this.emailValidation();
+
+ if (!(this.wrongUsernameBool || this.wrongEmailBool || this.wrongFirstNameBool || this.wrongLastNameBool))
+ return true;
+ return false;
+ }
+
+ isCorrectName(element: string): boolean {
+ if (this.pattName.test(element) && !(this.pattTwoSpaces.test(element)) && (element.length >= 1 && element.length <= 30))
+ return true;
+ return false;
+ }
+ isCorrectUsername(element: string): boolean {
+ if (this.pattUsername.test(element) && !(this.pattTwoSpaces.test(element)) && (element.length >= 1 && element.length <= 30))
+ return true;
+ return false;
+ }
+ isCorrectEmail(element: string): boolean {
+ if (this.pattEmail.test(element.toLowerCase()) && element.length <= 320)
+ return true;
+ return false;
+ }
+ isCorrectPassword(element: string): boolean {
+ if (this.pattPassword.test(element))
+ return true;
+ return false;
+ }
+ firstNameValidation() {
+ if (this.isCorrectName(this.firstName) == true) {
+ this.wrongFirstNameBool = false;
+ return;
+ }
+ //(<HTMLSelectElement>document.getElementById('firstName')).focus();
+ this.wrongFirstNameBool = true;
+ }
+ lastNameValidation() {
+ if (this.isCorrectName(this.lastName) == true) {
+ this.wrongLastNameBool = false;
+ return;
+ }
+ //(<HTMLSelectElement>document.getElementById('lastName')).focus();
+ this.wrongLastNameBool = true;
+ }
+ usernameValidation() {
+ if (this.isCorrectUsername(this.username) == true) {
+ this.wrongUsernameBool = false;
+ return;
+ }
+ //(<HTMLSelectElement>document.getElementById('username-register')).focus();
+ this.wrongUsernameBool = true;
+ }
+ emailValidation() {
+ if (this.isCorrectEmail(this.email) == true) {
+ this.wrongEmailBool = false;
+ return;
+ }
+ //(<HTMLSelectElement>document.getElementById('email')).focus();
+ this.wrongEmailBool = true;
+ }
+ passwordValidation() {
+ if (this.isCorrectPassword(this.oldPass) && this.isCorrectPassword(this.newPass1) && this.newPass1 == this.newPass2) {
+ this.wrongOldPassBool = false;
+ this.wrongNewPass1Bool = false;
+ this.wrongNewPass2Bool = false;
+ return;
+ }
+ this.oldPass = '';
+ this.newPass1 = '';
+ this.newPass2 = '';
+ //(<HTMLSelectElement>document.getElementById('pass1')).focus();
+ this.wrongOldPassBool = true;
+ this.wrongNewPass1Bool = true;
+ this.wrongNewPass2Bool = true;
+ }
}
diff --git a/frontend/src/app/_services/datasets.service.ts b/frontend/src/app/_services/datasets.service.ts
index 0ff63828..cd901481 100644
--- a/frontend/src/app/_services/datasets.service.ts
+++ b/frontend/src/app/_services/datasets.service.ts
@@ -27,4 +27,12 @@ export class DatasetsService {
getDatasetFile(fileId: any): any {
return this.http.get(`${API_SETTINGS.apiURL}/file/download?id=${fileId}`, { headers: this.authService.authHeader(), responseType: 'text' });
}
+
+ editDataset(dataset: Dataset): Observable<Dataset> {
+ return this.http.put<Dataset>(`${API_SETTINGS.apiURL}/dataset/`, dataset, { headers: this.authService.authHeader() });
+ }
+
+ deleteDataset(dataset: Dataset) {
+ return this.http.delete(`${API_SETTINGS.apiURL}/dataset/` + dataset.name, { headers: this.authService.authHeader(), responseType: "text" });
+ }
}
diff --git a/frontend/src/app/_services/predictors.service.ts b/frontend/src/app/_services/predictors.service.ts
index 54ae5694..844cd706 100644
--- a/frontend/src/app/_services/predictors.service.ts
+++ b/frontend/src/app/_services/predictors.service.ts
@@ -3,6 +3,7 @@ import { Injectable } from '@angular/core';
import { Observable } from 'rxjs';
import { API_SETTINGS } from 'src/config';
import Predictor from '../_data/Predictor';
+import { Column } from '../_pages/predict/predict.component';
import { AuthService } from './auth.service';
@Injectable({
@@ -21,7 +22,15 @@ export class PredictorsService {
return this.http.get<Predictor>(`${API_SETTINGS.apiURL}/predictor/getpredictor/`+ id, { headers: this.authService.authHeader() });
}
- usePredictor(predictor: Predictor, inputs : String[]) {
+ usePredictor(predictor: Predictor, inputs : Column[]) {
return this.http.post(`${API_SETTINGS.apiURL}/predictor/usepredictor/` + predictor._id, inputs, { headers: this.authService.authHeader() });
}
+
+ deletePredictor(predictor: Predictor) {
+ return this.http.delete(`${API_SETTINGS.apiURL}/predictor/` + predictor.name, { headers: this.authService.authHeader(), responseType: "text" });
+ }
+
+ getMyPredictors(): Observable<Predictor[]> {
+ return this.http.get<Predictor[]>(`${API_SETTINGS.apiURL}/predictor/mypredictors`, { headers: this.authService.authHeader() });
+ }
}
diff --git a/frontend/src/app/app.module.ts b/frontend/src/app/app.module.ts
index d701f9d7..04523989 100644
--- a/frontend/src/app/app.module.ts
+++ b/frontend/src/app/app.module.ts
@@ -1,4 +1,4 @@
-import { NgModule } from '@angular/core';
+import { NgModule, CUSTOM_ELEMENTS_SCHEMA } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { AppRoutingModule } from './app-routing.module';
@@ -42,6 +42,8 @@ import { AnnvisualComponent } from './_elements/annvisual/annvisual.component';
import { ExperimentComponent } from './experiment/experiment.component';
import { LoadingComponent } from './_elements/loading/loading.component';
import { ModelLoadComponent } from './_elements/model-load/model-load.component';
+import { AlertDialogComponent } from './_modals/alert-dialog/alert-dialog.component';
+import { AddNewDatasetComponent } from './_elements/add-new-dataset/add-new-dataset.component';
@NgModule({
declarations: [
@@ -73,7 +75,9 @@ import { ModelLoadComponent } from './_elements/model-load/model-load.component'
AnnvisualComponent,
ExperimentComponent,
LoadingComponent,
- ModelLoadComponent
+ ModelLoadComponent,
+ AlertDialogComponent,
+ AddNewDatasetComponent
],
imports: [
BrowserModule,
@@ -90,6 +94,8 @@ import { ModelLoadComponent } from './_elements/model-load/model-load.component'
Ng2SearchPipeModule,
],
providers: [],
- bootstrap: [AppComponent]
+ bootstrap: [AppComponent],
+ schemas: [CUSTOM_ELEMENTS_SCHEMA],
+ entryComponents: [AlertDialogComponent]
})
export class AppModule { }
diff --git a/frontend/src/app/material.module.ts b/frontend/src/app/material.module.ts
index e85419ee..d16cef3d 100644
--- a/frontend/src/app/material.module.ts
+++ b/frontend/src/app/material.module.ts
@@ -1,18 +1,21 @@
import { NgModule } from '@angular/core';
-
+import { CommonModule } from '@angular/common';
import { MatDialogModule } from '@angular/material/dialog';
import { MatButtonModule } from '@angular/material/button';
import { MatFormFieldModule } from '@angular/material/form-field';
import { MatInputModule } from '@angular/material/input';
import { MatCheckboxModule } from '@angular/material/checkbox';
+import { MatIconModule } from '@angular/material/icon';
@NgModule({
exports: [
+ CommonModule,
MatDialogModule,
MatButtonModule,
MatFormFieldModule,
MatInputModule,
- MatCheckboxModule
+ MatCheckboxModule,
+ MatIconModule
]
})
export class MaterialModule {} \ No newline at end of file