aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--backend/microservice/__pycache__/mlservice.cpython-310.pycbin5009 -> 7405 bytes
-rw-r--r--backend/microservice/api.py2
-rw-r--r--backend/microservice/mlservice.py32
3 files changed, 33 insertions, 1 deletions
diff --git a/backend/microservice/__pycache__/mlservice.cpython-310.pyc b/backend/microservice/__pycache__/mlservice.cpython-310.pyc
index c079459a..ac93f3db 100644
--- a/backend/microservice/__pycache__/mlservice.cpython-310.pyc
+++ b/backend/microservice/__pycache__/mlservice.cpython-310.pyc
Binary files differ
diff --git a/backend/microservice/api.py b/backend/microservice/api.py
index 4768f34c..9a28b159 100644
--- a/backend/microservice/api.py
+++ b/backend/microservice/api.py
@@ -9,7 +9,7 @@ import csv
import json
import mlservice
import h5py
-from mlservice2 import unositok
+from mlservice import unositok
app = flask.Flask(__name__)
diff --git a/backend/microservice/mlservice.py b/backend/microservice/mlservice.py
index b2eafe9a..8f56fc3f 100644
--- a/backend/microservice/mlservice.py
+++ b/backend/microservice/mlservice.py
@@ -54,6 +54,38 @@ def obuka(dataunos,params,modelunos,dataunosdrugog):
data[zeljenekolone[i]]=dataunos[zeljenekolone[i]]
#print(data.head(10))
+ ### 0.1) Povratne vrednosti statistike za front (za popunjavanje null vrednosti izabranih kolona) PART4
+ datafront=data.copy()
+ svekolone=datafront.columns
+ kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ #print(kategorijskekolone )
+ #kategorijskekolone=datacategorical.columns
+ #print(svekolone)
+ for i in range(len(svekolone)):
+ nazivkolone=svekolone[i]
+ if(nazivkolone in kategorijskekolone):
+ svekategorije=datafront[nazivkolone].unique()
+ medijana=None
+ srednjavrednost=None
+ frontreturn={'colName':nazivkolone,
+ 'colType':'categorical',
+ 'categoricalValues':svekategorije,
+ 'mean':medijana,
+ 'average':srednjavrednost
+ }
+ else:
+ svekategorije=None
+ medijana=datafront[nazivkolone].mean()
+ srednjavrednost=sum(datafront[nazivkolone])/len(datafront[nazivkolone])
+ frontreturn={'colName':nazivkolone,
+ 'colType':'noncategorical',
+ 'categoricalValues':svekategorije,
+ 'mean':medijana,
+ 'average':srednjavrednost
+ }
+
+ print(frontreturn)
+
#predvidetikol=input("UNETI NAZIV KOLONE ČIJU VREDNOST TREBA PREDVIDETI ")
###sta se cuva od promenjivih broj kolone ili naziv kolone???