aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py28
1 files changed, 15 insertions, 13 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index f870b2b1..988ad987 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -53,7 +53,7 @@ class train_callback(tf.keras.callbacks.Callback):
@app.route('/train', methods = ['POST'])
def train():
- #print("******************************TRAIN*************************************************")
+ print("******************************TRAIN*************************************************")
f = request.files.get("file")
data = pd.read_csv(f)
@@ -88,11 +88,10 @@ def train():
"h5FileId" : fileId,
"metrics" : m
}
- #print(predictor)
- #print('\n')
+ print(predictor)
url = config.api_url + "/Predictor/add"
r = requests.post(url, json=predictor).text
- #print(r)
+ print(r)
return r
@app.route('/predict', methods = ['POST'])
@@ -101,34 +100,37 @@ def predict():
model = tf.keras.models.load_model(h5)
paramsExperiment = json.loads(request.form["experiment"])
paramsPredictor = json.loads(request.form["predictor"])
- #print("********************************model loaded*******************************")
+ print("********************************model loaded*******************************")
result = newmlservice.predict(paramsExperiment, paramsPredictor, model)
return result
@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():
- #print("********************************PREPROCESS*******************************")
+ print("********************************PREPROCESS*******************************")
+
dataset = json.loads(request.form["dataset"])
file = request.files.get("file")
data=pd.read_csv(file)
-
- #dataset={}
+ '''
#f = request.json['filepath']
#data=pd.read_csv(f)
-
+ dataset={}
+ '''
preprocess = newmlservice.returnColumnsInfo(data)
#samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
for col in preprocess["columnInfo"]:
- col["uniqueValues"] = col["uniqueValues"][0:10]
- col["uniqueValuesCount"] = col["uniqueValuesCount"][0:10]
+ col["uniqueValues"] = col["uniqueValues"][0:6]
+ col["uniqueValuesCount"] = col["uniqueValuesCount"][0:6]
+ col['uniqueValuesPercent']=col['uniqueValuesPercent'][0:6]
dataset["columnInfo"] = preprocess["columnInfo"]
dataset["nullCols"] = preprocess["allNullColl"]
dataset["nullRows"] = preprocess["allNullRows"]
dataset["colCount"] = preprocess["colCount"]
dataset["rowCount"] = preprocess["rowCount"]
+ dataset["cMatrix"]=preprocess['cMatrix']
dataset["isPreProcess"] = True
- #print(dataset)
+
return jsonify(dataset)
-#print("App loaded.")
+print("App loaded.")
app.run() \ No newline at end of file