aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py19
1 files changed, 13 insertions, 6 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 4d9f8f2a..08f953a6 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,10 +1,11 @@
import flask
from flask import request, jsonify
-import ml_socket
import newmlservice
import tensorflow as tf
import pandas as pd
import json
+import requests
+import config
app = flask.Flask(__name__)
app.config["DEBUG"] = True
@@ -17,16 +18,22 @@ class train_callback(tf.keras.callbacks.Callback):
#
def on_epoch_end(self, epoch, logs=None):
print(epoch)
- ml_socket.send(epoch)
+ #ml_socket.send(epoch)
+ #file = request.files.get("file")
+ url = config.api_url + "/Model/epoch"
+ requests.post(url, epoch).text
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default
@app.route('/train', methods = ['POST'])
def train():
print("******************************TRAIN*************************************************")
- f = request.json["dataset"]
- dataset = pd.read_csv(f)
- #
- result = newmlservice.train(dataset, request.json["model"], train_callback)
+ f = request.files.get("file")
+ data = pd.read_csv(f)
+ paramsModel = json.loads(request.form["model"])
+ paramsExperiment = json.loads(request.form["experiment"])
+ paramsDataset = json.loads(request.form["dataset"])
+ #dataset, paramsModel, paramsExperiment, callback)
+ result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback)
print(result)
return jsonify(result)