aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py15
1 files changed, 10 insertions, 5 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 4d9f8f2a..937e643b 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -5,6 +5,8 @@ import newmlservice
import tensorflow as tf
import pandas as pd
import json
+import requests
+import config
app = flask.Flask(__name__)
app.config["DEBUG"] = True
@@ -17,16 +19,19 @@ class train_callback(tf.keras.callbacks.Callback):
#
def on_epoch_end(self, epoch, logs=None):
print(epoch)
- ml_socket.send(epoch)
+ #ml_socket.send(epoch)
+ #file = request.files.get("file")
+ url = config.api_url + "/Model/epoch"
+ requests.post(url, epoch).text
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default
@app.route('/train', methods = ['POST'])
def train():
print("******************************TRAIN*************************************************")
- f = request.json["dataset"]
- dataset = pd.read_csv(f)
- #
- result = newmlservice.train(dataset, request.json["model"], train_callback)
+ f = request.files.get("file")
+ data = pd.read_csv(f)
+ #dataset, paramsModel, paramsExperiment, callback)
+ result = newmlservice.train(data, request.json["model"], request.json["experiment"], request.json["dataset"], train_callback)
print(result)
return jsonify(result)