diff options
Diffstat (limited to 'backend/microservice/api/ml_service.py')
-rw-r--r-- | backend/microservice/api/ml_service.py | 236 |
1 files changed, 217 insertions, 19 deletions
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py index 7b950bcd..0aed3dc9 100644 --- a/backend/microservice/api/ml_service.py +++ b/backend/microservice/api/ml_service.py @@ -1,3 +1,6 @@ +from cmath import nan +from enum import unique +from itertools import count import pandas as pd from sklearn import datasets import tensorflow as tf @@ -13,12 +16,64 @@ from copyreg import constructor from flask import request, jsonify, render_template from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder -#import category_encoders as ce +import category_encoders as ce from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from dataclasses import dataclass +import statistics as s +from sklearn.metrics import roc_auc_score + +def returnColumnsInfo(dataset): + dict=[] + datafront=dataset.copy() + svekolone=datafront.columns + kategorijskekolone=datafront.select_dtypes(include=['object']).columns + allNullCols=0 + for kolona in svekolone: + if(kolona in kategorijskekolone): + uniquevalues=datafront[kolona].unique() + mean=0 + median=0 + min=0 + max=0 + nullCount=datafront[kolona].isnull().sum() + if(nullCount>0): + allNullCols=allNullCols+1 + frontreturn={'columnName':kolona, + 'isNumber':False, + 'uniqueValues':uniquevalues.tolist(), + 'mean':float(mean), + 'median':float(median), + 'numNulls':float(nullCount), + 'min':min, + 'max':max + } + dict.append(frontreturn) + else: + mean=datafront[kolona].mean() + median=s.median(datafront[kolona]) + nullCount=datafront[kolona].isnull().sum() + min=min(datafront[kolona]) + max=max(datafront[kolona]) + if(nullCount>0): + allNullCols=allNullCols+1 + frontreturn={'columnName':kolona, + 'isNumber':1, + 'uniqueValues':[], + 'mean':float(mean), + 'median':float(median), + 'numNulls':float(nullCount), + 'min':min, + 'max':max + } + dict.append(frontreturn) + NullRows = datafront[datafront.isnull().any(axis=1)] + #print(NullRows) + #print(len(NullRows)) + allNullRows=len(NullRows) + + return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows} -''' @dataclass class TrainingResultClassification: accuracy: float @@ -34,23 +89,25 @@ class TrainingResultClassification: fpr: float tpr: float metrics: dict - +''' @datasets class TrainingResultRegression: mse: float mae: float mape: float rmse: float -''' + @dataclass class TrainingResult: metrics: dict - +''' def train(dataset, params, callback): problem_type = params["type"] data = pd.DataFrame() for col in params["inputColumns"]: data[col]=dataset[col] + + print(data.head()) output_column = params["columnToPredict"] data[output_column] = dataset[output_column] # @@ -98,7 +155,7 @@ def train(dataset, params, callback): for col in data.columns: if(data[col].dtype==np.object_): data[col]=encoder.fit_transform(data[col]) - ''' + elif(encoding=='hashing'): category_columns=[] for col in data.columns: @@ -120,7 +177,7 @@ def train(dataset, params, callback): if(data[col].dtype==np.object_): category_columns.append(col) encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5) - encoder.fit_transform(data)''' + encoder.fit_transform(data) # # Input - output # @@ -130,6 +187,8 @@ def train(dataset, params, callback): x_columns.append(col) x = data[x_columns].values y = data[output_column].values + print(x_columns) + print(x) # # Podela na test i trening skupove # @@ -139,7 +198,7 @@ def train(dataset, params, callback): random=123 else: random=0 - x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, shuffle=params["shuffle"], random_state=random) + x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=0) # # Skaliranje vrednosti # @@ -158,21 +217,30 @@ def train(dataset, params, callback): if(problem_type=='multi-klasifikacioni'): func=params['hiddenLayerActivationFunctions'] - funcFirst=func.pop(0) - inputDim = len(data.columns) - 1 - classifier=tf.keras.Sequential(units=hidden_layer_neurons,input_dim=inputDim,activation=funcFirst) - for f in func: - classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=func)) output_func = params["outputLayerActivationFunction"] - numberofclasses=len(output_column.unique()) - classifier.add(tf.keras.layers.Dense(units=numberofclasses,activation=output_func)) - optimizer = params["optimizer"] metrics=params['metrics'] loss_func=params["lossFunction"] - classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics) batch_size = params["batchSize"] epochs = params["epochs"] + inputDim = len(data.columns) - 1 + ''' + classifier=tf.keras.Sequential() + + classifier.add(tf.keras.layers.Dense(units=len(data.columns),input_dim=inputDim))#input layer + + for f in func:#hidden layers + classifier.add(tf.keras.layers.Dense(hidden_layer_neurons,activation=f)) + + numberofclasses=len(output_column.unique()) + classifier.add(tf.keras.layers.Dense(numberofclasses,activation=output_func))#output layer + ''' + model=tf.keras.Sequential() + model.add(tf.keras.layers.Dense(1,input_dim=x_train.shape[1]))#input layer + model.add(tf.keras.layers.Dense(1, activation='sigmoid')) + model.add(tf.keras.layers.Dense(len(output_column.unique())+1, activation='softmax')) + classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics) + history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test)) else: classifier=tf.keras.Sequential() @@ -180,10 +248,12 @@ def train(dataset, params, callback): for func in params["hiddenLayerActivationFunctions"]: classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=func)) output_func = params["outputLayerActivationFunction"] + if(problem_type!="regresioni"): classifier.add(tf.keras.layers.Dense(units=1,activation=output_func)) else: classifier.add(tf.keras.layers.Dense(units=1)) + optimizer = params["optimizer"] metrics=params['metrics'] loss_func=params["lossFunction"] @@ -202,10 +272,33 @@ def train(dataset, params, callback): elif(problem_type == "binarni-klasifikacioni"): y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') - + elif(problem_type=='multi-klasifikacioni'): + y_pred=classifier.predict(x_test) + y_pred=np.argmax(y_pred,axis=1) + y_pred=y_pred.flatten() result=pd.DataFrame({"Actual":y_test,"Predicted":y_pred}) classifier.save("temp/"+model_name, save_format='h5') + # ROC multi-klasifikacioni + def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"): + + #creating a set of all the unique classes using the actual class list + unique_class = set(actual_class) + roc_auc_dict = {} + for per_class in unique_class: + + #creating a list of all the classes except the current class + other_class = [x for x in unique_class if x != per_class] + + #marking the current class as 1 and all other classes as 0 + new_actual_class = [0 if x in other_class else 1 for x in actual_class] + new_pred_class = [0 if x in other_class else 1 for x in pred_class] + + #using the sklearn metrics method to calculate the roc_auc_score + roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average) + roc_auc_dict[per_class] = roc_auc + + return roc_auc_dict # # Metrike # @@ -255,5 +348,110 @@ def train(dataset, params, callback): "r2" : r2, "adj_r2" : adj_r2 } + elif(problem_type=="multi-klasifikacioni"): + + cr=sm.classification_report(y_test, y_pred) + cm=sm.confusion_matrix(y_test,y_pred) + # https://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-classification/notebook + accuracy=metrics.accuracy_score(y_test, y_pred) + macro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'macro') + micro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'micro') + macro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'macro') + micro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'micro') + macro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'macro') + micro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'micro') + roc_auc_dict=roc_auc_score_multiclass(y_test, y_pred) + + # TODO upload trenirani model nazad na backend - return TrainingResult(metrics)
\ No newline at end of file + #return TrainingResult(metrics) + + +def manageH5(datain,params,h5model): + dataset=datain.copy() + problem_type = params["type"] + data = pd.DataFrame() + for col in params["inputColumns"]: + data[col]=dataset[col] + output_column = params["columnToPredict"] + data[output_column] = dataset[output_column] + # + # Brisanje null kolona / redova / zamena + #nullreplace=[ + # {"column":"Embarked","value":"C","deleteRow":false,"deleteCol":true}, + # {"column": "Cabin","value":"C123","deleteRow":"0","deleteCol":"0"}] + + null_value_options = params["nullValues"] + null_values_replacers = params["nullValuesReplacers"] + + if(null_value_options=='replace'): + print("replace null") # TODO + elif(null_value_options=='delete_rows'): + data=data.dropna() + elif(null_value_options=='delete_columns'): + data=data.dropna() + # + #print(data.isnull().any()) + # + # Brisanje kolona koje ne uticu na rezultat + # + num_rows=data.shape[0] + for col in data.columns: + if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)): + data.pop(col) + # + # Enkodiranje + # https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/ + # + encoding=params["encoding"] + if(encoding=='label'): + encoder=LabelEncoder() + for col in data.columns: + if(data[col].dtype==np.object_): + data[col]=encoder.fit_transform(data[col]) + elif(encoding=='onehot'): + category_columns=[] + for col in data.columns: + if(data[col].dtype==np.object_): + category_columns.append(col) + data=pd.get_dummies(data, columns=category_columns, prefix=category_columns) + elif(encoding=='ordinal'): + encoder = OrdinalEncoder() + for col in data.columns: + if(data[col].dtype==np.object_): + data[col]=encoder.fit_transform(data[col]) + + elif(encoding=='hashing'): + category_columns=[] + for col in data.columns: + if(data[col].dtype==np.object_): + category_columns.append(col) + encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns)) + encoder.fit_transform(data) + elif(encoding=='binary'): + category_columns=[] + for col in data.columns: + if(data[col].dtype==np.object_): + category_columns.append(col) + encoder=ce.BinaryEncoder(cols=category_columns, return_df=True) + encoder.fit_transform(data) + + elif(encoding=='baseN'): + category_columns=[] + for col in data.columns: + if(data[col].dtype==np.object_): + category_columns.append(col) + encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5) + encoder.fit_transform(data) + # + # Input - output + # + x_columns = [] + for col in data.columns: + if(col!=output_column): + x_columns.append(col) + x = data[x_columns].values + y = data[output_column].values + + + y_pred=h5model.predict_classes(x)
\ No newline at end of file |