diff options
Diffstat (limited to 'backend/microservice/api/newmlservice.py')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 2ea31702..02f2ad6d 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -21,7 +21,7 @@ from sklearn.model_selection import train_test_split from dataclasses import dataclass import statistics as s from sklearn.metrics import roc_auc_score -from ann_visualizer.visualize import ann_viz; +#from ann_visualizer.visualize import ann_viz; def returnColumnsInfo(dataset): dict=[] datafront=dataset.copy() @@ -43,7 +43,7 @@ def returnColumnsInfo(dataset): 'uniqueValues':uniquevalues.tolist(), 'median':float(mean), 'mean':float(median), - 'numNulls':float(nullCount), + 'numNulls':int(nullCount), 'min':float(minimum), 'max':float(maximum) } @@ -52,7 +52,7 @@ def returnColumnsInfo(dataset): minimum=min(datafront[kolona]) maximum=max(datafront[kolona]) mean=datafront[kolona].mean() - median=s.median(datafront[kolona]) + median=s.median(datafront[kolona].copy().dropna()) nullCount=datafront[kolona].isnull().sum() if(nullCount>0): allNullCols=allNullCols+1 @@ -61,7 +61,7 @@ def returnColumnsInfo(dataset): 'uniqueValues':[], 'mean':float(mean), 'median':float(median), - 'numNulls':float(nullCount), + 'numNulls':int(nullCount), 'min':float(minimum), 'max':float(maximum) } @@ -71,7 +71,7 @@ def returnColumnsInfo(dataset): #print(len(NullRows)) allNullRows=len(NullRows) - return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows} + return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows)} @dataclass class TrainingResultClassification: @@ -433,7 +433,7 @@ def manageH5(dataset,params,h5model): #print(x2) y2 = data[output_column].values h5model.summary() - ann_viz(h5model, title="My neural network") + #ann_viz(h5model, title="My neural network") h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics']) |