aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/newmlservice.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/newmlservice.py')
-rw-r--r--backend/microservice/api/newmlservice.py12
1 files changed, 6 insertions, 6 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 2ea31702..02f2ad6d 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -21,7 +21,7 @@ from sklearn.model_selection import train_test_split
from dataclasses import dataclass
import statistics as s
from sklearn.metrics import roc_auc_score
-from ann_visualizer.visualize import ann_viz;
+#from ann_visualizer.visualize import ann_viz;
def returnColumnsInfo(dataset):
dict=[]
datafront=dataset.copy()
@@ -43,7 +43,7 @@ def returnColumnsInfo(dataset):
'uniqueValues':uniquevalues.tolist(),
'median':float(mean),
'mean':float(median),
- 'numNulls':float(nullCount),
+ 'numNulls':int(nullCount),
'min':float(minimum),
'max':float(maximum)
}
@@ -52,7 +52,7 @@ def returnColumnsInfo(dataset):
minimum=min(datafront[kolona])
maximum=max(datafront[kolona])
mean=datafront[kolona].mean()
- median=s.median(datafront[kolona])
+ median=s.median(datafront[kolona].copy().dropna())
nullCount=datafront[kolona].isnull().sum()
if(nullCount>0):
allNullCols=allNullCols+1
@@ -61,7 +61,7 @@ def returnColumnsInfo(dataset):
'uniqueValues':[],
'mean':float(mean),
'median':float(median),
- 'numNulls':float(nullCount),
+ 'numNulls':int(nullCount),
'min':float(minimum),
'max':float(maximum)
}
@@ -71,7 +71,7 @@ def returnColumnsInfo(dataset):
#print(len(NullRows))
allNullRows=len(NullRows)
- return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows}
+ return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows)}
@dataclass
class TrainingResultClassification:
@@ -433,7 +433,7 @@ def manageH5(dataset,params,h5model):
#print(x2)
y2 = data[output_column].values
h5model.summary()
- ann_viz(h5model, title="My neural network")
+ #ann_viz(h5model, title="My neural network")
h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])