aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/mlservice.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/mlservice.py')
-rw-r--r--backend/microservice/mlservice.py15
1 files changed, 8 insertions, 7 deletions
diff --git a/backend/microservice/mlservice.py b/backend/microservice/mlservice.py
index 01a79c1a..0a5f7db1 100644
--- a/backend/microservice/mlservice.py
+++ b/backend/microservice/mlservice.py
@@ -3,7 +3,7 @@ import pandas as pd
import tensorflow as tf
import keras
import numpy as np
-
+import matplotlib.pyplot as plt
from copyreg import constructor
import flask
from flask import request, jsonify, render_template
@@ -31,8 +31,8 @@ class fCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
- print('Evaluation: ', self.model.evaluate(self.x_test))
-
+ print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n")#broj parametara zavisi od izabranih metrika loss je default
+
def obuka(dataunos,params):
import numpy as np
@@ -208,7 +208,7 @@ def obuka(dataunos,params):
classifier.add(tf.keras.layers.Dense(units=brojnu,activation=aktivacijau,input_dim=x_train.shape[1]))
- ### 11)Dodavanje drugog, skrivenog sloja
+ ### 11)Dodavanje drugog, skrivenog sloja ###PART2###
#aktivacijas=input("UNETI ŽELJENU AKTIVACIONU FUNKCIJU SKRIVENOG SLOJA ")
#brojns=int(input("UNETI BROJ NEURONA SKRIVENOG SLOJA "))
@@ -234,7 +234,8 @@ def obuka(dataunos,params):
optimizator=params["optimizer"]
### 13.1)Izbor metrike za kompajler PART2
- metrike=['mae','mse']
+ metrike=['mae','mse','accuracy']
+ #metrike=[]
lossf=params["lossFunction"]
'''
while(1):
@@ -243,7 +244,7 @@ def obuka(dataunos,params):
if(m=='KRAJ'):
break
metrike.append(m)'''
- classifier.compile(optimizer=optimizator, loss=lossf,metrics =metrike)
+ classifier.compile(optimizer=optimizator, loss=lossf,metrics=metrike)
performance_simple = fCallback(x_test, y_test)
### 14)
#uzorci=int(input("UNETI KOLIKO UZORAKA ĆE BITI UNETO U ISTO VREME "))
@@ -258,7 +259,7 @@ def obuka(dataunos,params):
metrikedf[metrike[i]]=history.history[metrike[i]]
#print(history.history[metrike[i]])
#plt.plot(history.history[metrike[i]])
- #plt.show()
+ plt.show()
#print(metrikedf)