aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/controller.py13
-rw-r--r--backend/microservice/api/ml_service.py128
-rw-r--r--backend/microservice/api/newmlservice.py424
3 files changed, 548 insertions, 17 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 524b97b5..1b17f727 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,7 +1,7 @@
import flask
from flask import request, jsonify
import ml_socket
-import ml_service
+import newmlservice
import tensorflow as tf
import pandas as pd
@@ -25,7 +25,7 @@ def train():
f = request.json["dataset"]
dataset = pd.read_csv(f)
#
- result = ml_service.train(dataset, request.json["model"], train_callback)
+ result = newmlservice.train(dataset, request.json["model"], train_callback)
print(result)
return jsonify(result)
@@ -34,16 +34,17 @@ def predict():
f = request.json['filepath']
dataset = pd.read_csv(f)
m = request.json['modelpath']
- #model = tf.keras.models.load_model(m)
- #
- #model.predict?
+ model = tf.keras.models.load_model(m)
+ print("********************************model loaded*******************************")
+ newmlservice.manageH5(dataset,request.json['model'],model)
+ return "done"
@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():
f=request.json['filepathcolinfo']
dataset=pd.read_csv(f)
- result=ml_service.returnColumnsInfo(dataset)
+ result=newmlservice.returnColumnsInfo(dataset)
return jsonify(result)
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py
index 73b191da..0aed3dc9 100644
--- a/backend/microservice/api/ml_service.py
+++ b/backend/microservice/api/ml_service.py
@@ -34,21 +34,27 @@ def returnColumnsInfo(dataset):
uniquevalues=datafront[kolona].unique()
mean=0
median=0
+ min=0
+ max=0
nullCount=datafront[kolona].isnull().sum()
if(nullCount>0):
allNullCols=allNullCols+1
frontreturn={'columnName':kolona,
'isNumber':False,
'uniqueValues':uniquevalues.tolist(),
- 'median':float(mean),
- 'mean':float(median),
- 'numNulls':float(nullCount)
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
}
dict.append(frontreturn)
else:
mean=datafront[kolona].mean()
median=s.median(datafront[kolona])
nullCount=datafront[kolona].isnull().sum()
+ min=min(datafront[kolona])
+ max=max(datafront[kolona])
if(nullCount>0):
allNullCols=allNullCols+1
frontreturn={'columnName':kolona,
@@ -56,7 +62,9 @@ def returnColumnsInfo(dataset):
'uniqueValues':[],
'mean':float(mean),
'median':float(median),
- 'numNulls':float(nullCount)
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
}
dict.append(frontreturn)
NullRows = datafront[datafront.isnull().any(axis=1)]
@@ -98,6 +106,8 @@ def train(dataset, params, callback):
data = pd.DataFrame()
for col in params["inputColumns"]:
data[col]=dataset[col]
+
+ print(data.head())
output_column = params["columnToPredict"]
data[output_column] = dataset[output_column]
#
@@ -177,6 +187,8 @@ def train(dataset, params, callback):
x_columns.append(col)
x = data[x_columns].values
y = data[output_column].values
+ print(x_columns)
+ print(x)
#
# Podela na test i trening skupove
#
@@ -186,7 +198,7 @@ def train(dataset, params, callback):
random=123
else:
random=0
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, shuffle=params["shuffle"], random_state=random)
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=0)
#
# Skaliranje vrednosti
#
@@ -212,17 +224,21 @@ def train(dataset, params, callback):
batch_size = params["batchSize"]
epochs = params["epochs"]
inputDim = len(data.columns) - 1
-
+ '''
classifier=tf.keras.Sequential()
-
+
classifier.add(tf.keras.layers.Dense(units=len(data.columns),input_dim=inputDim))#input layer
for f in func:#hidden layers
- classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=f))
+ classifier.add(tf.keras.layers.Dense(hidden_layer_neurons,activation=f))
numberofclasses=len(output_column.unique())
- classifier.add(tf.keras.layers.Dense(units=numberofclasses,activation=output_func))#output layer
-
+ classifier.add(tf.keras.layers.Dense(numberofclasses,activation=output_func))#output layer
+ '''
+ model=tf.keras.Sequential()
+ model.add(tf.keras.layers.Dense(1,input_dim=x_train.shape[1]))#input layer
+ model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
+ model.add(tf.keras.layers.Dense(len(output_column.unique())+1, activation='softmax'))
classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics)
history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test))
@@ -348,4 +364,94 @@ def train(dataset, params, callback):
# TODO upload trenirani model nazad na backend
- #return TrainingResult(metrics) \ No newline at end of file
+ #return TrainingResult(metrics)
+
+
+def manageH5(datain,params,h5model):
+ dataset=datain.copy()
+ problem_type = params["type"]
+ data = pd.DataFrame()
+ for col in params["inputColumns"]:
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ #
+ # Brisanje null kolona / redova / zamena
+ #nullreplace=[
+ # {"column":"Embarked","value":"C","deleteRow":false,"deleteCol":true},
+ # {"column": "Cabin","value":"C123","deleteRow":"0","deleteCol":"0"}]
+
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ #
+ #print(data.isnull().any())
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ # Enkodiranje
+ # https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
+ #
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ x = data[x_columns].values
+ y = data[output_column].values
+
+
+ y_pred=h5model.predict_classes(x) \ No newline at end of file
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
new file mode 100644
index 00000000..50af15f8
--- /dev/null
+++ b/backend/microservice/api/newmlservice.py
@@ -0,0 +1,424 @@
+from enum import unique
+from itertools import count
+import pandas as pd
+from sklearn import datasets, multiclass
+import tensorflow as tf
+import keras
+import numpy as np
+import csv
+import json
+import h5py
+import sklearn.metrics as sm
+from statistics import mode
+from typing_extensions import Self
+from copyreg import constructor
+from flask import request, jsonify, render_template
+from sklearn.preprocessing import LabelEncoder, MinMaxScaler
+from sklearn.preprocessing import OrdinalEncoder
+import category_encoders as ce
+from sklearn.preprocessing import StandardScaler
+from sklearn.model_selection import train_test_split
+from dataclasses import dataclass
+import statistics as s
+from sklearn.metrics import roc_auc_score
+from ann_visualizer.visualize import ann_viz;
+def returnColumnsInfo(dataset):
+ dict=[]
+ datafront=dataset.copy()
+ svekolone=datafront.columns
+ kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ allNullCols=0
+ for kolona in svekolone:
+ if(kolona in kategorijskekolone):
+ uniquevalues=datafront[kolona].unique()
+ mean=0
+ median=0
+ nullCount=datafront[kolona].isnull().sum()
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':False,
+ 'uniqueValues':uniquevalues.tolist(),
+ 'median':float(mean),
+ 'mean':float(median),
+ 'numNulls':float(nullCount)
+ }
+ dict.append(frontreturn)
+ else:
+ mean=datafront[kolona].mean()
+ median=s.median(datafront[kolona])
+ nullCount=datafront[kolona].isnull().sum()
+ if(nullCount>0):
+ allNullCols=allNullCols+1
+ frontreturn={'columnName':kolona,
+ 'isNumber':1,
+ 'uniqueValues':[],
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount)
+ }
+ dict.append(frontreturn)
+ NullRows = datafront[datafront.isnull().any(axis=1)]
+ #print(NullRows)
+ #print(len(NullRows))
+ allNullRows=len(NullRows)
+
+ return {'columnInfo':dict,'allNullColl':allNullCols,'allNullRows':allNullRows}
+
+@dataclass
+class TrainingResultClassification:
+ accuracy: float
+ precision: float
+ recall: float
+ tn: float
+ fp: float
+ fn: float
+ tp: float
+ specificity: float
+ f1: float
+ logloss: float
+ fpr: float
+ tpr: float
+ metrics: dict
+'''
+@datasets
+class TrainingResultRegression:
+ mse: float
+ mae: float
+ mape: float
+ rmse: float
+
+@dataclass
+class TrainingResult:
+ metrics: dict
+'''
+
+def train(dataset, params, callback):
+ problem_type = params["type"]
+ print(problem_type)
+ data = pd.DataFrame()
+ print(data)
+ for col in params["inputColumns"]:
+ print(col)
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ print(data)
+
+ ###NULL
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ print(data.shape)
+
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ ### Enkodiranje
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ print(x_columns)
+ x = data[x_columns].values
+ y = data[output_column].values
+
+ #
+ # Podela na test i trening skupove
+ #
+ test=params["randomTestSetDistribution"]
+ randomOrder = params["randomOrder"]
+ if(randomOrder):
+ random=123
+ else:
+ random=0
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
+ print(x_train,x_test)
+
+ #
+ # Treniranje modela
+ #
+ #
+ if(problem_type=='multi-klasifikacioni'):
+ #print('multi')
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=5, activation=params['outputLayerActivationFunction']))#izlazni sloj
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred=classifier.predict(x_test)
+ y_pred=np.argmax(y_pred,axis=1)
+ #print(y_pred.flatten())
+ #print(y_test)
+ scores = classifier.evaluate(x_test, y_test)
+ print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
+ classifier.save("temp/"+params['name'], save_format='h5')
+ #vizuelizacija u python-u
+ #from ann_visualizer.visualize import ann_viz;
+ #ann_viz(classifier, title="My neural network")
+
+ elif(problem_type=='binarni-klasifikacioni'):
+ #print('*************************************************************************binarni')
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=1, activation=params['outputLayerActivationFunction']))#izlazni sloj
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred=classifier.predict(x_test)
+ y_pred=(y_pred>=0.5).astype('int')
+
+ print(y_pred.flatten())
+ print(y_test)
+
+ scores = classifier.evaluate(x_test, y_test)
+ print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
+ #ann_viz(classifier, title="My neural network")
+
+ classifier.save("temp/"+params['name'], save_format='h5')
+
+ elif(problem_type=='regresioni'):
+ classifier=tf.keras.Sequential()
+
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog
+ for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
+ #print(i)
+ classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
+ classifier.add(tf.keras.layers.Dense(units=1))
+
+ classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
+
+ history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+ y_pred=classifier.predict(x_test)
+ print(classifier.evaluate(x_test, y_test))
+
+ def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
+
+ #creating a set of all the unique classes using the actual class list
+ unique_class = set(actual_class)
+ roc_auc_dict = {}
+ for per_class in unique_class:
+
+ #creating a list of all the classes except the current class
+ other_class = [x for x in unique_class if x != per_class]
+
+ #marking the current class as 1 and all other classes as 0
+ new_actual_class = [0 if x in other_class else 1 for x in actual_class]
+ new_pred_class = [0 if x in other_class else 1 for x in pred_class]
+
+ #using the sklearn metrics method to calculate the roc_auc_score
+ roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average)
+ roc_auc_dict[per_class] = roc_auc
+
+ return roc_auc_dict
+ #
+ # Metrike
+ #
+
+ if(problem_type=="binarni-klasifikacioni"):
+ accuracy = float(sm.accuracy_score(y_test,y_pred))
+ precision = float(sm.precision_score(y_test,y_pred))
+ recall = float(sm.recall_score(y_test,y_pred))
+ tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
+ specificity = float(tn / (tn+fp))
+ f1 = float(sm.f1_score(y_test,y_pred))
+ fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
+ logloss = float(sm.log_loss(y_test, y_pred))
+ metrics= {"accuracy" : accuracy,
+ "precision" : precision,
+ "recall" : recall,
+ "specificity" : specificity,
+ "f1" : f1,
+ "tn" : float(tn),
+ "fp" : float(fp),
+ "fn" : float(fn),
+ "tp" : float(tp),
+ "fpr" : fpr.tolist(),
+ "tpr" : tpr.tolist(),
+ "logloss" : logloss
+ }
+ elif(problem_type=="regresioni"):
+ # https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/
+ mse = float(sm.mean_squared_error(y_test,y_pred))
+ mae = float(sm.mean_absolute_error(y_test,y_pred))
+ mape = float(sm.mean_absolute_percentage_error(y_test,y_pred))
+ rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred)))
+ rmsle = float(np.sqrt(sm.mean_squared_error(y_test, y_pred)))
+ r2 = float(sm.r2_score(y_test, y_pred))
+ # n - num of observations
+ # k - num of independent variables
+ n = 40
+ k = 2
+ adj_r2 = float(1 - ((1-r2)*(n-1)/(n-k-1)))
+ metrics= {"mse" : mse,
+ "mae" : mae,
+ "mape" : mape,
+ "rmse" : rmse,
+ "rmsle" : rmsle,
+ "r2" : r2,
+ "adj_r2" : adj_r2
+ }
+ '''
+ elif(problem_type=="multi-klasifikacioni"):
+
+ cr=sm.classification_report(y_test, y_pred)
+ cm=sm.confusion_matrix(y_test,y_pred)
+ # https://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-classification/notebook
+ accuracy=metrics.accuracy_score(y_test, y_pred)
+ macro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'macro')
+ micro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'micro')
+ macro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'macro')
+ micro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'micro')
+ macro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'macro')
+ micro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'micro')
+ roc_auc_dict=roc_auc_score_multiclass(y_test, y_pred)
+ '''
+
+def manageH5(dataset,params,h5model):
+ problem_type = params["type"]
+ print(problem_type)
+ data = pd.DataFrame()
+ #print(data)
+ for col in params["inputColumns"]:
+ print(col)
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ #print(data)
+
+ ###NULL
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ print(data.shape)
+
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ ### Enkodiranje
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ #print(data)
+
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ #print(x_columns)
+ x2 = data[x_columns]
+ print(x2)
+ print(x2.values)
+ x2 = data[x_columns].values
+ print(x2)
+ y2 = data[output_column].values
+ h5model.summary()
+ ann_viz(h5model, title="My neural network")
+
+ h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
+
+ history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize'])
+
+ y_pred2=h5model.predict(x2)
+
+ y_pred2=np.argmax(y_pred2,axis=1)
+ #y_pred=h5model.predict_classes(x)
+ score = h5model.evaluate(x2,y_pred2, verbose=0)
+ print("%s: %.2f%%" % (h5model.metrics_names[1], score[1]*100))
+ print(y_pred2)
+ print( 'done') \ No newline at end of file