aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/controller.py6
-rw-r--r--backend/microservice/api/newmlservice.py16
2 files changed, 17 insertions, 5 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index fad6e181..41035cc7 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -120,9 +120,9 @@ def returnColumnsInfo():
#samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
for col in preprocess["columnInfo"]:
- col["uniqueValues"] = col["uniqueValues"][0:5]
- col["uniqueValuesCount"] = col["uniqueValuesCount"][0:5]
- col['uniqueValuesPercent']=col['uniqueValuesPercent'][0:5]
+ col["uniqueValues"] = col["uniqueValues"][0:6]
+ col["uniqueValuesCount"] = col["uniqueValuesCount"][0:6]
+ col['uniqueValuesPercent']=col['uniqueValuesPercent'][0:6]
dataset["columnInfo"] = preprocess["columnInfo"]
dataset["nullCols"] = preprocess["allNullColl"]
dataset["nullRows"] = preprocess["allNullRows"]
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 647c3b79..631837e5 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -148,6 +148,7 @@ class TrainingResult:
'''
def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
+ ###UCITAVANJE SETA
problem_type = paramsModel["type"]
#print(problem_type)
data = pd.DataFrame()
@@ -159,6 +160,15 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
data[output_column] = dataset[output_column]
#print(data)
+ ###KATEGORIJSKE KOLONE
+ kategorijskekolone=[]
+ ###PRETVARANJE NUMERICKIH U KATREGORIJSKE AKO JE KORISNIK TAKO OZNACIO
+ columnInfo=paramsDataset['columnInfo']
+ for col in columnInfo:
+ if(col['columnType']=="Kategorijski"):
+ data[col['columnName']]=data[col['columnName']].apply(str)
+ kategorijskekolone.append(col['coumnName'])
+
###NULL
null_value_options = paramsExperiment["nullValues"]
null_values_replacers = paramsExperiment["nullValuesReplacers"]
@@ -182,16 +192,18 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
#
# Brisanje kolona koje ne uticu na rezultat
#
+ '''
num_rows=data.shape[0]
for col in data.columns:
if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
data.pop(col)
#
+ '''
### Enkodiranje
encodings=paramsExperiment["encodings"]
datafront=dataset.copy()
- svekolone=datafront.columns
- kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+ #svekolone=datafront.columns
+ #kategorijskekolone=datafront.select_dtypes(include=['object']).columns
for kolonaEncoding in encodings:
kolona = kolonaEncoding["columnName"]