diff options
Diffstat (limited to 'backend')
-rw-r--r-- | backend/api/api/Controllers/ModelController.cs | 18 | ||||
-rw-r--r-- | backend/api/api/Models/ColumnEncoding.cs | 6 | ||||
-rw-r--r-- | backend/api/api/Models/ColumnInfo.cs | 14 | ||||
-rw-r--r-- | backend/api/api/Models/Experiment.cs | 1 | ||||
-rw-r--r-- | backend/api/api/Models/Predictor.cs | 24 | ||||
-rw-r--r-- | backend/api/api/Services/FillAnEmptyDb.cs | 262 | ||||
-rw-r--r-- | backend/api/api/Services/IModelService.cs | 1 | ||||
-rw-r--r-- | backend/api/api/Services/ModelService.cs | 4 | ||||
-rw-r--r-- | backend/api/api/UploadedFiles/Igrannonica/iris.csv | 151 | ||||
-rw-r--r-- | backend/microservice/api/newmlservice.py | 19 |
10 files changed, 397 insertions, 103 deletions
diff --git a/backend/api/api/Controllers/ModelController.cs b/backend/api/api/Controllers/ModelController.cs index ce1759ca..fb30a7a2 100644 --- a/backend/api/api/Controllers/ModelController.cs +++ b/backend/api/api/Controllers/ModelController.cs @@ -109,6 +109,24 @@ namespace api.Controllers return _modelService.GetMyModels(uploaderId); } + // GET: api/<ModelController>/mymodels + [HttpGet("mymodelsbytype/{problemtype}")] + [Authorize(Roles = "User")] + public ActionResult<List<Model>> GetMyModelsByType(string problemType) + { + string uploaderId = getUserId(); + + if (uploaderId == null) + return BadRequest(); + + List<Model> modeli = _modelService.GetMyModelsByType(uploaderId, problemType); + + if (modeli == null) + return NoContent(); + else + return modeli; + } + // vraca svoj model prema nekom imenu // GET api/<ModelController>/{name} [HttpGet("{name}")] diff --git a/backend/api/api/Models/ColumnEncoding.cs b/backend/api/api/Models/ColumnEncoding.cs index b5f61070..2a2fce8b 100644 --- a/backend/api/api/Models/ColumnEncoding.cs +++ b/backend/api/api/Models/ColumnEncoding.cs @@ -2,6 +2,12 @@ { public class ColumnEncoding { + public ColumnEncoding(string columnName, string encoding) + { + this.columnName = columnName; + this.encoding = encoding; + } + public string columnName { get; set; } public string encoding { get; set; } } diff --git a/backend/api/api/Models/ColumnInfo.cs b/backend/api/api/Models/ColumnInfo.cs index 99418732..04450fef 100644 --- a/backend/api/api/Models/ColumnInfo.cs +++ b/backend/api/api/Models/ColumnInfo.cs @@ -2,6 +2,20 @@ { public class ColumnInfo { + public ColumnInfo() { } + + public ColumnInfo(string columnName, bool isNumber, int numNulls, float mean, float min, float max, float median, string[] uniqueValues) + { + this.columnName = columnName; + this.isNumber = isNumber; + this.numNulls = numNulls; + this.mean = mean; + this.min = min; + this.max = max; + this.median = median; + this.uniqueValues = uniqueValues; + } + public string columnName { get; set; } public bool isNumber { get; set; } public int numNulls { get; set; } diff --git a/backend/api/api/Models/Experiment.cs b/backend/api/api/Models/Experiment.cs index 6f665c52..f7bec083 100644 --- a/backend/api/api/Models/Experiment.cs +++ b/backend/api/api/Models/Experiment.cs @@ -10,6 +10,7 @@ namespace api.Models public string _id { get; set; } public string name { get; set; } public string description { get; set; } + public string type { get; set; } public List<string> ModelIds { get; set; } public string datasetId { get; set; } public string uploaderId { get; set; } diff --git a/backend/api/api/Models/Predictor.cs b/backend/api/api/Models/Predictor.cs index 8608d766..342c5b5d 100644 --- a/backend/api/api/Models/Predictor.cs +++ b/backend/api/api/Models/Predictor.cs @@ -21,9 +21,8 @@ namespace api.Models public string modelId { get; set; } public string h5FileId { get; set; } public Metric[] metrics { get; set; } - - } + public class Metric { string Name { get; set; } @@ -32,12 +31,15 @@ namespace api.Models } } -/* +/** +* Paste one or more documents here + { - "_id" : "", - "username" : "ivan123", - "name" : "Neki prediktor", - "description" : "Neki opis prediktora koji je unet tamo", + "_id": { + "$oid": "625dc348b7856ace8a6f8702" + + }, + "uploaderId" : "6242ea59486c664208d4255c", "inputs": ["proba", "proba2", "proba3" @@ -46,6 +48,8 @@ namespace api.Models "isPublic" : true, "accessibleByLink" : true, "dateCreated" : "2022-04-11T20:33:26.937+00:00", - "experimentId" : "Neki id eksperimenta" -} -*/
\ No newline at end of file + "experimentId" : "Neki id eksperimenta", + "modelId" : "Neki id eksperimenta", + "h5FileId" : "Neki id eksperimenta", + "metrics" : [{ }] +}*/
\ No newline at end of file diff --git a/backend/api/api/Services/FillAnEmptyDb.cs b/backend/api/api/Services/FillAnEmptyDb.cs index 33c1ada6..6d5683bd 100644 --- a/backend/api/api/Services/FillAnEmptyDb.cs +++ b/backend/api/api/Services/FillAnEmptyDb.cs @@ -1,5 +1,6 @@ using api.Interfaces; using api.Models; +using Microsoft.AspNetCore.SignalR; using MongoDB.Driver; namespace api.Services @@ -32,10 +33,10 @@ namespace api.Services if (_fileService.CheckDb()) { - /* + FileModel file = new FileModel(); - string folderName = "UploadedFiles/Igrannonica"; + string folderName = "UploadedFiles"; var folderPath = Path.Combine(Directory.GetCurrentDirectory(), folderName, "Igrannonica"); var fullPath = Path.Combine(folderPath, "titanic.csv"); @@ -51,9 +52,9 @@ namespace api.Services Dataset dataset = new Dataset(); dataset._id = ""; - dataset.username = "Igrannonica"; + dataset.uploaderId = "Igrannonica"; dataset.name = "Titanik dataset"; - dataset.description = "Opis dataseta 1"; + dataset.description = "Titanik dataset"; dataset.header = new string[] { "PassengerId", "Survived", "Pclass", "Name", "Sex", "Age", "SibSp", "Parch", "Ticket", "Fare", "Cabin", "Embarked" }; dataset.fileId = _fileService.GetFileId(fullPath); dataset.extension = ".csv"; @@ -64,9 +65,25 @@ namespace api.Services dataset.delimiter = ""; dataset.hasHeader = true; dataset.columnInfo = new ColumnInfo[] { }; + dataset.columnInfo = new[] + { + new ColumnInfo( "PassengerId", true, 0, 446, 1, 891, 446, new string[]{ }), + new ColumnInfo( "Survived", true, 0, 0.38383838534355164f, 0, 1, 0, new string[]{ }), + new ColumnInfo( "Pclass", true, 0, 2.3086419105529785f, 1, 3, 3, new string[]{ }), + new ColumnInfo( "Name", false, 0, 0, 0, 0, 0, new string[]{"Braund, Mr. Owen Harris", "Boulos, Mr. Hanna", "Frolicher-Stehli, Mr. Maxmillian", "Gilinski, Mr. Eliezer", "Murdlin, Mr. Joseph", "Rintamaki, Mr. Matti", "Stephenson, Mrs. Walter Bertram (Martha Eustis)", "Elsbury, Mr. William James", "Bourke, Miss. Mary", "Chapman, Mr. John Henry"}), + new ColumnInfo( "Sex", false, 0, 0, 0, 0, 0, new string[]{ "male", "female" }), + new ColumnInfo( "Age", true, 177, 29.69911766052246f, 0.41999998688697815f, 80, 28, new string[]{ }), + new ColumnInfo( "SibSp", true, 0, 0.523007869720459f, 0, 8, 0, new string[]{ }), + new ColumnInfo( "Parch", true, 0, 0.3815937042236328f, 0, 6, 0, new string[]{ }), + new ColumnInfo( "Ticket", false, 0, 0, 0, 0, 0, new string[]{ "347082", "CA. 2343", "1601", "3101295", "CA 2144", "347088", "S.O.C. 14879", "382652", "LINE", "PC 17757" }), + new ColumnInfo( "Fare", true, 0, 32.20420837402344f, 0, 512.3292236328125f, 14.45419979095459f, new string[]{ }), + new ColumnInfo( "Cabin", false, 687, 0, 0, 0, 0, new string[]{ "B96 B98", "G6", "C23 C25 C27", "C22 C26", "F33", "F2", "E101", "D", "C78", "C93" }), + new ColumnInfo( "Embarked", false, 2, 0.3815937042236328f, 0, 6, 0, new string[]{ "S", "C", "Q" }), + }; + dataset.rowCount = 891; dataset.nullCols = 3; dataset.nullRows = 708; - dataset.isPreProcess = false; + dataset.isPreProcess = true; _datasetService.Create(dataset); @@ -74,25 +91,22 @@ namespace api.Services Model model = new Model(); model._id = ""; - model.username = "Igrannonica"; - model.name = "Titanik model"; - model.description = "Opis modela 1"; + model.uploaderId = "Igrannonica"; + model.name = "Model Titanik"; + model.description = "Model Titanik"; model.dateCreated = DateTime.Now; model.lastUpdated = DateTime.Now; - model.experimentId = ""; - model.type = "regresioni"; - model.encoding = "label"; + model.type = "binarni-klasifikacioni"; model.optimizer = "Adam"; model.lossFunction = "mean_squared_error"; - model.hiddenLayerNeurons = 1; - model.hiddenLayers = 1; - model.batchSize = 5; + model.hiddenLayerNeurons = 3; + model.hiddenLayers = 5; + model.batchSize = 8; model.outputNeurons = 0; - model.hiddenLayerActivationFunctions = new string[] { "sigmoid" }; + model.hiddenLayerActivationFunctions = new string[] { "relu", "relu", "relu", "relu", "relu" }; model.outputLayerActivationFunction = "sigmoid"; model.metrics = new string[] { }; model.epochs = 5; - model.isTrained = false; _modelService.Create(model); @@ -100,18 +114,35 @@ namespace api.Services Experiment experiment = new Experiment(); experiment._id = ""; + experiment.name = "Eksperiment Titanik"; + experiment.description = "Binarno klasifikacioni, label"; + experiment.ModelIds = new string[] { }.ToList(); experiment.datasetId = _datasetService.GetDatasetId(dataset.fileId); experiment.uploaderId = "Igrannonica"; - experiment.inputColumns = new string[] { }; - experiment.outputColumn = ""; - experiment.randomOrder = false; - experiment.randomTestSet = false; - experiment.randomTestSetDistribution = 0; - experiment.nullValues = ""; + experiment.inputColumns = new string[] { "Embarked" }; + experiment.outputColumn = "Survived"; + experiment.randomOrder = true; + experiment.randomTestSet = true; + experiment.randomTestSetDistribution = 0.30000001192092896f; + experiment.nullValues = "delete_rows"; experiment.nullValuesReplacers = new NullValues[] { }; + experiment.encodings = new[] + { + new ColumnEncoding( "Survived", "label" ), + new ColumnEncoding("Embarked", "label" ) + }; _experimentService.Create(experiment); + var experiment1 = _experimentService.Get(experiment._id); + var dataset1 = _datasetService.GetOneDataset(experiment.datasetId); + var filepath1 = _fileService.GetFilePath(dataset.fileId, "Igrannonica"); + var model1 = _modelService.GetOneModel(model._id); + + + //_mlService.TrainModel(model1, experiment1, filepath1, dataset1, "Igrannonica"); + + /* Predictor predictor = new Predictor(); @@ -127,7 +158,7 @@ namespace api.Services predictor.experimentId = "0"; //izmeni experiment id - _predictorService.Create(predictor); + _predictorService.Create(predictor);*/ //-------------------------------------------------------------------- @@ -142,14 +173,13 @@ namespace api.Services _fileService.Create(file); - + dataset = new Dataset(); dataset._id = ""; - dataset.username = "Igrannonica"; + dataset.uploaderId = "Igrannonica"; dataset.name = "Diamonds dataset"; - dataset.description = "Opis dataseta 2"; - dataset.header = new string[] { "carat", "cut", "color", "clarity", "depth", "table", "price", "x", "y", "z" }; + dataset.description = "Diamonds dataset"; dataset.fileId = _fileService.GetFileId(fullPath); dataset.extension = ".csv"; dataset.isPublic = true; @@ -157,57 +187,91 @@ namespace api.Services dataset.dateCreated = DateTime.Now; dataset.lastUpdated = DateTime.Now; dataset.delimiter = ""; - dataset.hasHeader = true; - dataset.columnInfo = new ColumnInfo[] { }; + dataset.hasHeader = true; + dataset.columnInfo = new[] + { + new ColumnInfo( "Unnamed: 0", true, 0, 26969.5f, 0, 53939, 26969.5f, new string[]{ }), + new ColumnInfo( "carat", true, 0, 0.7979397773742676f, 0.20000000298023224f, 5.010000228881836f, 0.699999988079071f, new string[]{ }), + new ColumnInfo( "cut", false, 0, 0, 0, 0, 0, new string[]{ "Ideal", "Premium", "Very Good", "Good", "Fair" }), + new ColumnInfo( "color", false, 0, 0, 0, 0, 0, new string[]{"G", "E", "F", "H", "D", "I", "I", "J"}), + new ColumnInfo( "clarity", false, 0, 0, 0, 0, 0, new string[]{ "SI1", "VS2","SI2", "VS1", "VVS2", "VVS1", "IF", "I1" }), + new ColumnInfo( "depth", true, 0, 61.74940490722656f, 43, 79, 61.79999923706055f, new string[]{ }), + new ColumnInfo( "table", true, 0, 57.457183837890625f, 43, 95, 57, new string[]{ }), + new ColumnInfo( "price", true, 0, 3932.7998046875f, 326, 18823, 2401, new string[]{ }), + new ColumnInfo( "x", true, 0, 5.731157302856445f, 0, 10.739999771118164f, 5.699999809265137f, new string[]{ }), + new ColumnInfo( "y", true, 0, 5.73452615737915f, 0, 58.900001525878906f, 5.710000038146973f, new string[]{ }), + new ColumnInfo( "z", true, 0, 3.538733720779419f, 0, 31.799999237060547f, 3.5299999713897705f, new string[]{ }) + }; + dataset.rowCount = 53940; dataset.nullCols = 0; dataset.nullRows = 0; - dataset.isPreProcess = false; + dataset.isPreProcess = true; _datasetService.Create(dataset); - */ - /* + + model = new Model(); model._id = ""; - model.username = "Igrannonica"; - model.name = "Igrannonica model 2"; - model.description = "Opis modela 2"; + model.uploaderId = "Igrannonica"; + model.name = "Diamonds model"; + model.description = "Diamonds model"; model.dateCreated = DateTime.Now; model.lastUpdated = DateTime.Now; - model.experimentId = ""; - model.type = ""; - model.encoding = ""; - model.optimizer = ""; - model.lossFunction = ""; - model.hiddenLayerNeurons = 0; - model.hiddenLayers = 0; - model.batchSize = 0; + model.type = "regresioni"; + model.optimizer = "Adam"; + model.lossFunction = "mean_absolute_error"; + model.hiddenLayerNeurons = 2; + model.hiddenLayers = 4; + model.batchSize = 5; model.outputNeurons = 0; - model.hiddenLayerActivationFunctions = new string[] { "sigmoid" }; - model.outputLayerActivationFunction = ""; + model.hiddenLayerActivationFunctions = new string[] { "relu", "relu", "relu", "relu" }; + model.outputLayerActivationFunction = "relu"; model.metrics = new string[] { }; - model.epochs = 0; - model.isTrained = false; + model.epochs = 5; _modelService.Create(model); - + experiment = new Experiment(); experiment._id = ""; + experiment.name = "Diamonds eksperiment"; + experiment.description = "Diamonds eksperiment"; + experiment.ModelIds = new string[] { }.ToList(); experiment.datasetId = _datasetService.GetDatasetId(dataset.fileId); experiment.uploaderId = "Igrannonica"; - experiment.inputColumns = new string[] { }; - experiment.outputColumn = ""; - experiment.randomOrder = false; - experiment.randomTestSet = false; - experiment.randomTestSetDistribution = 0; - experiment.nullValues = ""; - experiment.nullValuesReplacers = new NullValues[] { }; - + experiment.inputColumns = new string[] { "Unnamed: 0", "carat", "cut", "color", "clarity", "depth", "table", "x", "y", "z" }; + experiment.outputColumn = "price"; + experiment.randomOrder = true; + experiment.randomTestSet = true; + experiment.randomTestSetDistribution = 0.30000001192092896f; + experiment.nullValues = "delete_rows"; + experiment.nullValuesReplacers = new NullValues[] { }; + experiment.encodings = new[] + { + new ColumnEncoding( "Unnamed: 0", "label" ), + new ColumnEncoding( "carat", "label" ), + new ColumnEncoding( "cut", "label" ), + new ColumnEncoding( "color", "label" ), + new ColumnEncoding( "clarity", "label" ), + new ColumnEncoding( "depth", "label" ), + new ColumnEncoding( "table", "label" ), + new ColumnEncoding( "price", "label" ), + new ColumnEncoding( "x", "label" ), + new ColumnEncoding( "y", "label" ), + new ColumnEncoding( "z", "label" ) + }; + _experimentService.Create(experiment); + experiment1 = _experimentService.Get(experiment._id); + dataset1 = _datasetService.GetOneDataset(experiment.datasetId); + filepath1 = _fileService.GetFilePath(dataset.fileId, "Igrannonica"); + model1 = _modelService.GetOneModel(model._id); + //_mlService.TrainModel(model1, experiment1, filepath1, dataset1, "Igrannonica"); + /* predictor = new Predictor(); @@ -224,12 +288,12 @@ namespace api.Services //izmeni experiment id _predictorService.Create(predictor); - + */ //-------------------------------------------------------------------- file = new FileModel(); - fullPath = Path.Combine(folderPath, "IMDB-Movie-Data.csv"); + fullPath = Path.Combine(folderPath, "iris.csv"); file._id = ""; file.type = ".csv"; file.uploaderId = "Igrannonica"; @@ -242,10 +306,9 @@ namespace api.Services dataset = new Dataset(); dataset._id = ""; - dataset.username = "Igrannonica"; - dataset.name = "Igrannonica dataset 3"; - dataset.description = "Opis dataseta 3"; - dataset.header = new string[] { "PassengerId", "Survived", "Pclass", "Name", "Sex", "Age", "SibSp", "Parch", "Ticket", "Fare", "Cabin", "Embarked" }; + dataset.uploaderId = "Igrannonica"; + dataset.name = "Iris dataset"; + dataset.description = "Iris dataset"; dataset.fileId = _fileService.GetFileId(fullPath); dataset.extension = ".csv"; dataset.isPublic = true; @@ -254,56 +317,77 @@ namespace api.Services dataset.lastUpdated = DateTime.Now; dataset.delimiter = ""; dataset.hasHeader = true; - dataset.columnInfo = new ColumnInfo[] { }; - dataset.nullCols = 0; + dataset.columnInfo = new[] + { + new ColumnInfo( "sepal_length", true, 0, 5.8433332443237305f, 4.300000190734863f, 7.900000095367432f, 5.800000190734863f, new string[]{ }), + new ColumnInfo( "sepal_width", true, 0, 3.053999900817871f, 2, 4.400000095367432f, 3, new string[]{ }), + new ColumnInfo( "petal_length", true, 0, 3.758666753768921f, 1, 6.900000095367432f, 4.349999904632568f, new string[]{ }), + new ColumnInfo( "petal_width", true, 0, 1.1986666917800903f, 0.10000000149011612f, 2.5f, 1.2999999523162842f, new string[]{}), + new ColumnInfo( "class", false, 0, 0, 0, 0, 0, new string[]{ "Iris-setosa", "Iris-versicolor", "Iris-virginica" }), + }; + dataset.nullCols = 150; dataset.nullRows = 0; - dataset.isPreProcess = false; + dataset.isPreProcess = true; _datasetService.Create(dataset); - + model = new Model(); model._id = ""; - model.username = "Igrannonica"; - model.name = "Igrannonica model 3"; - model.description = "Opis modela 3"; + model.uploaderId = "Igrannonica"; + model.name = "Model Iris"; + model.description = "Model Iris"; model.dateCreated = DateTime.Now; model.lastUpdated = DateTime.Now; - model.experimentId = ""; - model.type = ""; - model.encoding = ""; - model.optimizer = ""; - model.lossFunction = ""; - model.hiddenLayerNeurons = 0; - model.hiddenLayers = 0; - model.batchSize = 0; + model.type = "multi-klasifikacioni"; + model.optimizer = "Adam"; + model.lossFunction = "sparse_categorical_crossentropy"; + model.hiddenLayerNeurons = 3; + model.hiddenLayers = 3; + model.batchSize = 4; model.outputNeurons = 0; - model.hiddenLayerActivationFunctions = new string[] { "sigmoid" }; - model.outputLayerActivationFunction = ""; + model.hiddenLayerActivationFunctions = new string[] { "relu", "relu", "softmax" }; + model.outputLayerActivationFunction = "softmax"; model.metrics = new string[] { }; - model.epochs = 0; - model.isTrained = false; + model.epochs = 1; _modelService.Create(model); - + experiment = new Experiment(); experiment._id = ""; + experiment.name = "Iris eksperiment"; + experiment.description = "Iris eksperiment"; + experiment.ModelIds = new string[] { }.ToList(); experiment.datasetId = _datasetService.GetDatasetId(dataset.fileId); experiment.uploaderId = "Igrannonica"; - experiment.inputColumns = new string[] { }; - experiment.outputColumn = ""; - experiment.randomOrder = false; - experiment.randomTestSet = false; - experiment.randomTestSetDistribution = 0; - experiment.nullValues = ""; - experiment.nullValuesReplacers = new NullValues[] { }; + experiment.inputColumns = new string[] { "sepal_length", "sepal_width", "petal_length", "petal_width" }; + experiment.outputColumn = "class"; + experiment.randomOrder = true; + experiment.randomTestSet = true; + experiment.randomTestSetDistribution = 0.20000000298023224f; + experiment.nullValues = "delete_rows"; + experiment.nullValuesReplacers = new NullValues[] { }; + experiment.encodings = new[] + { + new ColumnEncoding( "sepal_length", "label" ), + new ColumnEncoding("sepal_width", "label" ), + new ColumnEncoding( "petal_length", "label" ), + new ColumnEncoding( "petal_width", "label" ), + new ColumnEncoding( "class", "label" ) + }; _experimentService.Create(experiment); + experiment1 = _experimentService.Get(experiment._id); + dataset1 = _datasetService.GetOneDataset(experiment.datasetId); + filepath1 = _fileService.GetFilePath(dataset.fileId, "Igrannonica"); + model1 = _modelService.GetOneModel(model._id); + //_mlService.TrainModel(model1, experiment1, filepath1, dataset1, "Igrannonica"); + /* predictor = new Predictor(); predictor._id = ""; diff --git a/backend/api/api/Services/IModelService.cs b/backend/api/api/Services/IModelService.cs index bcb82e2d..00299979 100644 --- a/backend/api/api/Services/IModelService.cs +++ b/backend/api/api/Services/IModelService.cs @@ -8,6 +8,7 @@ namespace api.Services Model GetOneModel(string userId, string name); Model GetOneModel(string id); List<Model> GetMyModels(string userId); + List<Model> GetMyModelsByType(string userId, string problemType); List<Model> GetLatestModels(string userId); //List<Model> GetPublicModels(); Model Create(Model model); diff --git a/backend/api/api/Services/ModelService.cs b/backend/api/api/Services/ModelService.cs index d3ff9bf9..c35e5374 100644 --- a/backend/api/api/Services/ModelService.cs +++ b/backend/api/api/Services/ModelService.cs @@ -35,6 +35,10 @@ namespace api.Services { return _model.Find(model => model.uploaderId == userId).ToList(); } + public List<Model> GetMyModelsByType(string userId, string problemType) + { + return _model.Find(model => (model.uploaderId == userId && model.type == problemType)).ToList(); + } public List<Model> GetLatestModels(string userId) { List<Model> list = _model.Find(model => model.uploaderId == userId).ToList(); diff --git a/backend/api/api/UploadedFiles/Igrannonica/iris.csv b/backend/api/api/UploadedFiles/Igrannonica/iris.csv new file mode 100644 index 00000000..0713e5cb --- /dev/null +++ b/backend/api/api/UploadedFiles/Igrannonica/iris.csv @@ -0,0 +1,151 @@ +sepal_length,sepal_width,petal_length,petal_width,class +5.1,3.5,1.4,0.2,Iris-setosa +4.9,3.0,1.4,0.2,Iris-setosa +4.7,3.2,1.3,0.2,Iris-setosa +4.6,3.1,1.5,0.2,Iris-setosa +5.0,3.6,1.4,0.2,Iris-setosa +5.4,3.9,1.7,0.4,Iris-setosa +4.6,3.4,1.4,0.3,Iris-setosa +5.0,3.4,1.5,0.2,Iris-setosa +4.4,2.9,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5.4,3.7,1.5,0.2,Iris-setosa +4.8,3.4,1.6,0.2,Iris-setosa +4.8,3.0,1.4,0.1,Iris-setosa +4.3,3.0,1.1,0.1,Iris-setosa +5.8,4.0,1.2,0.2,Iris-setosa +5.7,4.4,1.5,0.4,Iris-setosa +5.4,3.9,1.3,0.4,Iris-setosa +5.1,3.5,1.4,0.3,Iris-setosa +5.7,3.8,1.7,0.3,Iris-setosa +5.1,3.8,1.5,0.3,Iris-setosa +5.4,3.4,1.7,0.2,Iris-setosa +5.1,3.7,1.5,0.4,Iris-setosa +4.6,3.6,1.0,0.2,Iris-setosa +5.1,3.3,1.7,0.5,Iris-setosa +4.8,3.4,1.9,0.2,Iris-setosa +5.0,3.0,1.6,0.2,Iris-setosa +5.0,3.4,1.6,0.4,Iris-setosa +5.2,3.5,1.5,0.2,Iris-setosa +5.2,3.4,1.4,0.2,Iris-setosa +4.7,3.2,1.6,0.2,Iris-setosa +4.8,3.1,1.6,0.2,Iris-setosa +5.4,3.4,1.5,0.4,Iris-setosa +5.2,4.1,1.5,0.1,Iris-setosa +5.5,4.2,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5.0,3.2,1.2,0.2,Iris-setosa +5.5,3.5,1.3,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +4.4,3.0,1.3,0.2,Iris-setosa +5.1,3.4,1.5,0.2,Iris-setosa +5.0,3.5,1.3,0.3,Iris-setosa +4.5,2.3,1.3,0.3,Iris-setosa +4.4,3.2,1.3,0.2,Iris-setosa +5.0,3.5,1.6,0.6,Iris-setosa +5.1,3.8,1.9,0.4,Iris-setosa +4.8,3.0,1.4,0.3,Iris-setosa +5.1,3.8,1.6,0.2,Iris-setosa +4.6,3.2,1.4,0.2,Iris-setosa +5.3,3.7,1.5,0.2,Iris-setosa +5.0,3.3,1.4,0.2,Iris-setosa +7.0,3.2,4.7,1.4,Iris-versicolor +6.4,3.2,4.5,1.5,Iris-versicolor +6.9,3.1,4.9,1.5,Iris-versicolor +5.5,2.3,4.0,1.3,Iris-versicolor +6.5,2.8,4.6,1.5,Iris-versicolor +5.7,2.8,4.5,1.3,Iris-versicolor +6.3,3.3,4.7,1.6,Iris-versicolor +4.9,2.4,3.3,1.0,Iris-versicolor +6.6,2.9,4.6,1.3,Iris-versicolor +5.2,2.7,3.9,1.4,Iris-versicolor +5.0,2.0,3.5,1.0,Iris-versicolor +5.9,3.0,4.2,1.5,Iris-versicolor +6.0,2.2,4.0,1.0,Iris-versicolor +6.1,2.9,4.7,1.4,Iris-versicolor +5.6,2.9,3.6,1.3,Iris-versicolor +6.7,3.1,4.4,1.4,Iris-versicolor +5.6,3.0,4.5,1.5,Iris-versicolor +5.8,2.7,4.1,1.0,Iris-versicolor +6.2,2.2,4.5,1.5,Iris-versicolor +5.6,2.5,3.9,1.1,Iris-versicolor +5.9,3.2,4.8,1.8,Iris-versicolor +6.1,2.8,4.0,1.3,Iris-versicolor +6.3,2.5,4.9,1.5,Iris-versicolor +6.1,2.8,4.7,1.2,Iris-versicolor +6.4,2.9,4.3,1.3,Iris-versicolor +6.6,3.0,4.4,1.4,Iris-versicolor +6.8,2.8,4.8,1.4,Iris-versicolor +6.7,3.0,5.0,1.7,Iris-versicolor +6.0,2.9,4.5,1.5,Iris-versicolor +5.7,2.6,3.5,1.0,Iris-versicolor +5.5,2.4,3.8,1.1,Iris-versicolor +5.5,2.4,3.7,1.0,Iris-versicolor +5.8,2.7,3.9,1.2,Iris-versicolor +6.0,2.7,5.1,1.6,Iris-versicolor +5.4,3.0,4.5,1.5,Iris-versicolor +6.0,3.4,4.5,1.6,Iris-versicolor +6.7,3.1,4.7,1.5,Iris-versicolor +6.3,2.3,4.4,1.3,Iris-versicolor +5.6,3.0,4.1,1.3,Iris-versicolor +5.5,2.5,4.0,1.3,Iris-versicolor +5.5,2.6,4.4,1.2,Iris-versicolor +6.1,3.0,4.6,1.4,Iris-versicolor +5.8,2.6,4.0,1.2,Iris-versicolor +5.0,2.3,3.3,1.0,Iris-versicolor +5.6,2.7,4.2,1.3,Iris-versicolor +5.7,3.0,4.2,1.2,Iris-versicolor +5.7,2.9,4.2,1.3,Iris-versicolor +6.2,2.9,4.3,1.3,Iris-versicolor +5.1,2.5,3.0,1.1,Iris-versicolor +5.7,2.8,4.1,1.3,Iris-versicolor +6.3,3.3,6.0,2.5,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +7.1,3.0,5.9,2.1,Iris-virginica +6.3,2.9,5.6,1.8,Iris-virginica +6.5,3.0,5.8,2.2,Iris-virginica +7.6,3.0,6.6,2.1,Iris-virginica +4.9,2.5,4.5,1.7,Iris-virginica +7.3,2.9,6.3,1.8,Iris-virginica +6.7,2.5,5.8,1.8,Iris-virginica +7.2,3.6,6.1,2.5,Iris-virginica +6.5,3.2,5.1,2.0,Iris-virginica +6.4,2.7,5.3,1.9,Iris-virginica +6.8,3.0,5.5,2.1,Iris-virginica +5.7,2.5,5.0,2.0,Iris-virginica +5.8,2.8,5.1,2.4,Iris-virginica +6.4,3.2,5.3,2.3,Iris-virginica +6.5,3.0,5.5,1.8,Iris-virginica +7.7,3.8,6.7,2.2,Iris-virginica +7.7,2.6,6.9,2.3,Iris-virginica +6.0,2.2,5.0,1.5,Iris-virginica +6.9,3.2,5.7,2.3,Iris-virginica +5.6,2.8,4.9,2.0,Iris-virginica +7.7,2.8,6.7,2.0,Iris-virginica +6.3,2.7,4.9,1.8,Iris-virginica +6.7,3.3,5.7,2.1,Iris-virginica +7.2,3.2,6.0,1.8,Iris-virginica +6.2,2.8,4.8,1.8,Iris-virginica +6.1,3.0,4.9,1.8,Iris-virginica +6.4,2.8,5.6,2.1,Iris-virginica +7.2,3.0,5.8,1.6,Iris-virginica +7.4,2.8,6.1,1.9,Iris-virginica +7.9,3.8,6.4,2.0,Iris-virginica +6.4,2.8,5.6,2.2,Iris-virginica +6.3,2.8,5.1,1.5,Iris-virginica +6.1,2.6,5.6,1.4,Iris-virginica +7.7,3.0,6.1,2.3,Iris-virginica +6.3,3.4,5.6,2.4,Iris-virginica +6.4,3.1,5.5,1.8,Iris-virginica +6.0,3.0,4.8,1.8,Iris-virginica +6.9,3.1,5.4,2.1,Iris-virginica +6.7,3.1,5.6,2.4,Iris-virginica +6.9,3.1,5.1,2.3,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +6.8,3.2,5.9,2.3,Iris-virginica +6.7,3.3,5.7,2.5,Iris-virginica +6.7,3.0,5.2,2.3,Iris-virginica +6.3,2.5,5.0,1.9,Iris-virginica +6.5,3.0,5.2,2.0,Iris-virginica +6.2,3.4,5.4,2.3,Iris-virginica +5.9,3.0,5.1,1.8,Iris-virginica diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 604e4d3c..f5122a06 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -156,6 +156,15 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): # ### Enkodiranje encodings=paramsExperiment["encodings"] + + from sklearn.preprocessing import LabelEncoder + kategorijskekolone=data.select_dtypes(include=['object']).columns + encoder=LabelEncoder() + for kolona in data.columns: + if(kolona in kategorijskekolone): + data[kolona]=encoder.fit_transform(data[kolona]) + ''' + encoding=paramsExperiment["encoding"] datafront=dataset.copy() svekolone=datafront.columns kategorijskekolone=datafront.select_dtypes(include=['object']).columns @@ -207,6 +216,8 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): category_columns.append(col) encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5) encoder.fit_transform(data) + + ''' # # Input - output # @@ -301,7 +312,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) @@ -333,7 +344,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history @@ -359,7 +370,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj classifier.add(tf.keras.layers.Dense(units=1)) - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history @@ -529,7 +540,7 @@ def manageH5(dataset,params,h5model): h5model.summary() #ann_viz(h5model, title="My neural network") - h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics']) + h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['accuracy','']) history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize']) |