aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_data/Model.ts
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_data/Model.ts')
-rw-r--r--frontend/src/app/_data/Model.ts13
1 files changed, 7 insertions, 6 deletions
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index f527dc7f..898805d3 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -2,6 +2,7 @@ import { NgIf } from "@angular/common";
import { FolderFile } from "./FolderFile";
export default class Model extends FolderFile {
+ public lossFunction: LossFunction;
constructor(
name: string = 'Novi model',
public description: string = '',
@@ -12,7 +13,6 @@ export default class Model extends FolderFile {
// Neural net training settings
public type: ProblemType = ProblemType.Regression,
public optimizer: Optimizer = Optimizer.Adam,
- public lossFunction: LossFunction = LossFunctionRegression[0],
public inputNeurons: number = 1,
public hiddenLayers: number = 1,
public batchSize: BatchSize = BatchSize.O3,
@@ -28,11 +28,12 @@ export default class Model extends FolderFile {
public randomOrder: boolean = true,
public randomTestSet: boolean = true,
public randomTestSetDistribution: number = 0.1, //0.1-0.9 (10% - 90%) JESTE OVDE ZAKUCANO 10, AL POSLATO JE KAO 0.1 BACK-U
- public validationSize:number=0.1,
+ public validationSize: number = 0.1,
public isPublic: boolean = false,
public accessibleByLink: boolean = false
) {
super(name, dateCreated, lastUpdated);
+ this.lossFunction = (this.type == ProblemType.Regression ? LossFunctionRegression[0] : (this.type == ProblemType.BinaryClassification ? LossFunctionBinaryClassification[0] : LossFunctionMultiClassification[0]));
}
}
export class Layer {
@@ -45,8 +46,8 @@ export class Layer {
) { }
}
export enum LearningRate {
- LR1 = '0.00001',
- LR2 = '0.0001',
+ // LR1 = '0.00001',
+ // LR2 = '0.0001',
LR3 = '0.001',
LR4 = '0.003',
LR5 = '0.01',
@@ -120,7 +121,7 @@ export enum LossFunction {
SquaredHingeLoss = 'squared_hinge',
HingeLoss = 'hinge',
// multi-class classification loss functions
- CategoricalCrossEntropy = 'categorical_crossentropy',
+ // CategoricalCrossEntropy = 'categorical_crossentropy',
SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy',
KLDivergence = 'kullback_leibler_divergence',
@@ -134,7 +135,7 @@ export enum LossFunction {
export const LossFunctionRegression = [LossFunction.MeanAbsoluteError, LossFunction.MeanSquaredError, LossFunction.MeanSquaredLogarithmicError]
export const LossFunctionBinaryClassification = [LossFunction.BinaryCrossEntropy, LossFunction.SquaredHingeLoss, LossFunction.HingeLoss]
-export const LossFunctionMultiClassification = [LossFunction.CategoricalCrossEntropy, LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence]
+export const LossFunctionMultiClassification = [/*LossFunction.CategoricalCrossEntropy,*/ LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence]
export enum Optimizer {
Adam = 'Adam',