aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_data/Model.ts
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_data/Model.ts')
-rw-r--r--frontend/src/app/_data/Model.ts22
1 files changed, 5 insertions, 17 deletions
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index 526a8290..cc25c91b 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -2,7 +2,6 @@ import { NgIf } from "@angular/common";
import { FolderFile } from "./FolderFile";
export default class Model extends FolderFile {
- _id: string = '';
constructor(
name: string = 'Novi model',
public description: string = '',
@@ -13,7 +12,7 @@ export default class Model extends FolderFile {
// Neural net training settings
public type: ProblemType = ProblemType.Regression,
public optimizer: Optimizer = Optimizer.Adam,
- public lossFunction: LossFunction = LossFunction.MeanSquaredError,
+ public lossFunction: LossFunction = LossFunctionRegression[0],
public inputNeurons: number = 1,
public hiddenLayers: number = 1,
public batchSize: BatchSize = BatchSize.O3,
@@ -132,21 +131,10 @@ export enum LossFunction {
MeanSquaredLogarithmicError = 'mean_squared_logarithmic_error',
HuberLoss = 'Huber'
}
-export enum LossFunctionRegression {
- MeanAbsoluteError = 'mean_absolute_error',
- MeanSquaredError = 'mean_squared_error',
- MeanSquaredLogarithmicError = 'mean_squared_logarithmic_error',
-}
-export enum LossFunctionBinaryClassification {
- BinaryCrossEntropy = 'binary_crossentropy',
- SquaredHingeLoss = 'squared_hinge_loss',
- HingeLoss = 'hinge_loss',
-}
-export enum LossFunctionMultiClassification {
- CategoricalCrossEntropy = 'categorical_crossentropy',
- SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy',
- KLDivergence = 'kullback_leibler_divergence',
-}
+export const LossFunctionRegression = [LossFunction.MeanAbsoluteError, LossFunction.MeanSquaredError, LossFunction.MeanSquaredLogarithmicError]
+export const LossFunctionBinaryClassification = [LossFunction.BinaryCrossEntropy, LossFunction.SquaredHingeLoss, LossFunction.HingeLoss]
+
+export const LossFunctionMultiClassification = [LossFunction.CategoricalCrossEntropy, LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence]
export enum Optimizer {
Adam = 'Adam',