diff options
Diffstat (limited to 'frontend/src/app/_data')
-rw-r--r-- | frontend/src/app/_data/Dataset.ts | 14 | ||||
-rw-r--r-- | frontend/src/app/_data/FolderFile.ts | 13 | ||||
-rw-r--r-- | frontend/src/app/_data/Model.ts | 109 |
3 files changed, 83 insertions, 53 deletions
diff --git a/frontend/src/app/_data/Dataset.ts b/frontend/src/app/_data/Dataset.ts index 03060982..9d4b67a9 100644 --- a/frontend/src/app/_data/Dataset.ts +++ b/frontend/src/app/_data/Dataset.ts @@ -1,15 +1,17 @@ -export default class Dataset { +import { FolderFile } from "./FolderFile"; + +export default class Dataset extends FolderFile { _id: string = ''; constructor( - public name: string = 'Novi izvor podataka', + name: string = 'Novi izvor podataka', public description: string = '', public header: string[] = [], public fileId?: number, public extension: string = '.csv', public isPublic: boolean = false, public accessibleByLink: boolean = false, - public dateCreated: Date = new Date(), - public lastUpdated: Date = new Date(), + dateCreated: Date = new Date(), + lastUpdated: Date = new Date(), public uploaderId: string = '', public delimiter: string = '', public hasHeader: boolean = true, @@ -19,7 +21,9 @@ export default class Dataset { public nullRows: number = 0, public nullCols: number = 0, public preview: string[][] = [[]] - ) { } + ) { + super(name, dateCreated, lastUpdated); + } } export class ColumnInfo { diff --git a/frontend/src/app/_data/FolderFile.ts b/frontend/src/app/_data/FolderFile.ts new file mode 100644 index 00000000..a79eeac5 --- /dev/null +++ b/frontend/src/app/_data/FolderFile.ts @@ -0,0 +1,13 @@ +export class FolderFile { + constructor( + public name: string, + public dateCreated: Date, + public lastUpdated: Date + ) { } +} + + +export enum FolderType { + Dataset, + Model +}
\ No newline at end of file diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts index a3b86bdf..c1f3d108 100644 --- a/frontend/src/app/_data/Model.ts +++ b/frontend/src/app/_data/Model.ts @@ -1,12 +1,13 @@ import { NgIf } from "@angular/common"; +import { FolderFile } from "./FolderFile"; -export default class Model { +export default class Model extends FolderFile { _id: string = ''; constructor( - public name: string = 'Novi model', + name: string = 'Novi model', public description: string = '', - public dateCreated: Date = new Date(), - public lastUpdated: Date = new Date(), + dateCreated: Date = new Date(), + lastUpdated: Date = new Date(), //public experimentId: string = '', // Neural net training settings @@ -15,57 +16,56 @@ export default class Model { public lossFunction: LossFunction = LossFunction.MeanSquaredError, public inputNeurons: number = 1, public hiddenLayers: number = 1, - public batchSize: number = 5, + public batchSize: BatchSize = BatchSize.O3, public outputLayerActivationFunction: ActivationFunction = ActivationFunction.Sigmoid, public uploaderId: string = '', public metrics: string[] = [], // TODO add to add-model form public epochs: number = 5, // TODO add to add-model form - public inputColNum:number=5, - public learningRate:LearningRate=LearningRate.LR1, - public layers:Layer[]=[new Layer()] + public inputColNum: number = 5, + public learningRate: LearningRate = LearningRate.LR1, + public layers: Layer[] = [new Layer()] - ) { } + ) { + super(name, dateCreated, lastUpdated); + } } -export class Layer{ +export class Layer { constructor( - public layerNumber:number=0, - public activationFunction:ActivationFunction=ActivationFunction.Sigmoid, - public neurons:number=1, - public regularisation:Regularisation=Regularisation.L1, - public regularisationRate:RegularisationRate=RegularisationRate.RR1, - - ) - {} - -} -export enum LearningRate{ - LR1='0.00001', - LR2='0.0001', - LR3='0.001', - LR4='0.003', - LR5='0.01', - LR6='0.03', - LR7='0.1', - LR8='0.3', - LR9='1', - LR10='3', - LR11='10', -} -export enum Regularisation{ - L1='l1', - L2='l2' -} -export enum RegularisationRate{ - RR1='0', - RR2='0.001', - RR3='0.003', - RR4='0.01', - RR5='0.03', - RR6='0.1', - RR7='0.3', - RR8='1', - RR9='3', - RR10='10', + public layerNumber: number = 0, + public activationFunction: ActivationFunction = ActivationFunction.Sigmoid, + public neurons: number = 1, + public regularisation: Regularisation = Regularisation.L1, + public regularisationRate: RegularisationRate = RegularisationRate.RR1, + ) { } +} +export enum LearningRate { + LR1 = '0.00001', + LR2 = '0.0001', + LR3 = '0.001', + LR4 = '0.003', + LR5 = '0.01', + LR6 = '0.03', + LR7 = '0.1', + LR8 = '0.3', + LR9 = '1', + LR10 = '3', + LR11 = '10', +} +export enum Regularisation { + L1 = 'l1', + L2 = 'l2' +} +export enum RegularisationRate { + RR1 = '0', + RR2 = '0.001', + RR3 = '0.003', + RR4 = '0.01', + RR5 = '0.03', + RR6 = '0.1', + RR7 = '0.3', + RR8 = '1', + RR9 = '3', + RR10 = '10', } export enum ProblemType { Regression = 'regresioni', @@ -198,4 +198,17 @@ export enum MetricsMultiClassification { Precision = 'precision_score', Recall = 'recall_score', F1 = 'f1_score', +} + +export enum BatchSize { + O1 = '2', + O2 = '4', + O3 = '8', + O4 = '16', + O5 = '32', + O6 = '64', + O7 = '128', + O8 = '256', + O9 = '512', + O10 = '1024' }
\ No newline at end of file |