diff options
Diffstat (limited to 'frontend/src/app/_data')
-rw-r--r-- | frontend/src/app/_data/Dataset.ts | 3 | ||||
-rw-r--r-- | frontend/src/app/_data/Model.ts | 19 | ||||
-rw-r--r-- | frontend/src/app/_data/Predictor.ts | 19 |
3 files changed, 26 insertions, 15 deletions
diff --git a/frontend/src/app/_data/Dataset.ts b/frontend/src/app/_data/Dataset.ts index a962fe6b..c8d5771a 100644 --- a/frontend/src/app/_data/Dataset.ts +++ b/frontend/src/app/_data/Dataset.ts @@ -4,7 +4,7 @@ export default class Dataset extends FolderFile { constructor( name: string = 'Novi izvor podataka', public description: string = '', - public fileId?: number, + public fileId?: string, public extension: string = '.csv', public isPublic: boolean = false, public accessibleByLink: boolean = false, @@ -17,6 +17,7 @@ export default class Dataset extends FolderFile { public rowCount: number = 0, public nullRows: number = 0, public nullCols: number = 0, + public isPreProcess : Boolean = false, public cMatrix: number[][] = [] ) { super(name, dateCreated, lastUpdated); diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts index cc25c91b..898805d3 100644 --- a/frontend/src/app/_data/Model.ts +++ b/frontend/src/app/_data/Model.ts @@ -2,6 +2,7 @@ import { NgIf } from "@angular/common"; import { FolderFile } from "./FolderFile"; export default class Model extends FolderFile { + public lossFunction: LossFunction; constructor( name: string = 'Novi model', public description: string = '', @@ -12,7 +13,6 @@ export default class Model extends FolderFile { // Neural net training settings public type: ProblemType = ProblemType.Regression, public optimizer: Optimizer = Optimizer.Adam, - public lossFunction: LossFunction = LossFunctionRegression[0], public inputNeurons: number = 1, public hiddenLayers: number = 1, public batchSize: BatchSize = BatchSize.O3, @@ -21,18 +21,19 @@ export default class Model extends FolderFile { public metrics: string[] = [], // TODO add to add-model form public epochs: number = 5, // TODO add to add-model form public inputColNum: number = 5, - public learningRate: LearningRate = LearningRate.LR1, + public learningRate: LearningRate = LearningRate.LR3, public layers: Layer[] = [new Layer()], // Test set settings public randomOrder: boolean = true, public randomTestSet: boolean = true, public randomTestSetDistribution: number = 0.1, //0.1-0.9 (10% - 90%) JESTE OVDE ZAKUCANO 10, AL POSLATO JE KAO 0.1 BACK-U - + public validationSize: number = 0.1, public isPublic: boolean = false, public accessibleByLink: boolean = false ) { super(name, dateCreated, lastUpdated); + this.lossFunction = (this.type == ProblemType.Regression ? LossFunctionRegression[0] : (this.type == ProblemType.BinaryClassification ? LossFunctionBinaryClassification[0] : LossFunctionMultiClassification[0])); } } export class Layer { @@ -45,8 +46,8 @@ export class Layer { ) { } } export enum LearningRate { - LR1 = '0.00001', - LR2 = '0.0001', + // LR1 = '0.00001', + // LR2 = '0.0001', LR3 = '0.001', LR4 = '0.003', LR5 = '0.01', @@ -117,10 +118,10 @@ export enum ActivationFunctionOutputLayer export enum LossFunction { // binary classification loss functions BinaryCrossEntropy = 'binary_crossentropy', - SquaredHingeLoss = 'squared_hinge_loss', - HingeLoss = 'hinge_loss', + SquaredHingeLoss = 'squared_hinge', + HingeLoss = 'hinge', // multi-class classification loss functions - CategoricalCrossEntropy = 'categorical_crossentropy', + // CategoricalCrossEntropy = 'categorical_crossentropy', SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy', KLDivergence = 'kullback_leibler_divergence', @@ -134,7 +135,7 @@ export enum LossFunction { export const LossFunctionRegression = [LossFunction.MeanAbsoluteError, LossFunction.MeanSquaredError, LossFunction.MeanSquaredLogarithmicError] export const LossFunctionBinaryClassification = [LossFunction.BinaryCrossEntropy, LossFunction.SquaredHingeLoss, LossFunction.HingeLoss] -export const LossFunctionMultiClassification = [LossFunction.CategoricalCrossEntropy, LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence] +export const LossFunctionMultiClassification = [/*LossFunction.CategoricalCrossEntropy,*/ LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence] export enum Optimizer { Adam = 'Adam', diff --git a/frontend/src/app/_data/Predictor.ts b/frontend/src/app/_data/Predictor.ts index 55d610ed..8de4cd17 100644 --- a/frontend/src/app/_data/Predictor.ts +++ b/frontend/src/app/_data/Predictor.ts @@ -3,19 +3,28 @@ import { FolderFile } from "./FolderFile"; export default class Predictor extends FolderFile { constructor( name: string = 'Novi prediktor', - public description: string = '', + + public uploaderId: string = '', public inputs: string[] = [], public output: string = '', public isPublic: boolean = false, public accessibleByLink: boolean = false, dateCreated: Date = new Date(), - lastUpdated: Date = new Date(), - public uploaderId: string = '', - //public finalMetrics: Metric[] = [] public experimentId: string = "", public modelId: string = "", + public h5FileId: string = "", + public metricsLoss:number[]=[], + public metricsValLoss:number []=[], + public metricsAcc:number[]=[], + public metricsValAcc: number[]=[], + public metricsMae :number []=[], + public metricsValMae :number []=[], + public metricsMse : number[]=[], + public metricsValMse : number[]=[], + //public metrics: Metric[] = [], + //public finalMetrics: Metric[] = [] ) { - super(name, dateCreated, lastUpdated); + super(name, dateCreated, dateCreated); } } |