aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_data
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_data')
-rw-r--r--frontend/src/app/_data/Dataset.ts18
-rw-r--r--frontend/src/app/_data/Experiment.ts3
-rw-r--r--frontend/src/app/_data/FolderFile.ts13
-rw-r--r--frontend/src/app/_data/Model.ts73
4 files changed, 89 insertions, 18 deletions
diff --git a/frontend/src/app/_data/Dataset.ts b/frontend/src/app/_data/Dataset.ts
index 766040a3..e8207718 100644
--- a/frontend/src/app/_data/Dataset.ts
+++ b/frontend/src/app/_data/Dataset.ts
@@ -1,17 +1,19 @@
-export default class Dataset {
+import { FolderFile } from "./FolderFile";
+
+export default class Dataset extends FolderFile {
_id: string = '';
constructor(
- public name: string = 'Novi izvor podataka',
+ name: string = 'Novi izvor podataka',
public description: string = '',
public header: string[] = [],
public fileId?: number,
public extension: string = '.csv',
public isPublic: boolean = false,
public accessibleByLink: boolean = false,
- public dateCreated: Date = new Date(),
- public lastUpdated: Date = new Date(),
+ dateCreated: Date = new Date(),
+ lastUpdated: Date = new Date(),
public uploaderId: string = '',
- public delimiter: string = '',
+ public delimiter: string = ',',
public hasHeader: boolean = true,
public columnInfo: ColumnInfo[] = [],
@@ -19,7 +21,9 @@ export default class Dataset {
public nullRows: number = 0,
public nullCols: number = 0,
public preview: string[][] = [[]]
- ) { }
+ ) {
+ super(name, dateCreated, lastUpdated);
+ }
}
export class ColumnInfo {
@@ -33,4 +37,4 @@ export class ColumnInfo {
public min?: number,
public max?: number
) { }
-} \ No newline at end of file
+}
diff --git a/frontend/src/app/_data/Experiment.ts b/frontend/src/app/_data/Experiment.ts
index 95ef6e1e..ec966008 100644
--- a/frontend/src/app/_data/Experiment.ts
+++ b/frontend/src/app/_data/Experiment.ts
@@ -19,8 +19,7 @@ export default class Experiment {
public randomTestSet: boolean = true,
public randomTestSetDistribution: number = 0.1, //0.1-0.9 (10% - 90%) JESTE OVDE ZAKUCANO 10, AL POSLATO JE KAO 0.1 BACK-U
- public encodings: ColumnEncoding[] = [],
- public type: ProblemType = ProblemType.Regression
+ public encodings: ColumnEncoding[] = []//[{columnName: "", columnEncoding: Encoding.Label}]
) { }
}
diff --git a/frontend/src/app/_data/FolderFile.ts b/frontend/src/app/_data/FolderFile.ts
new file mode 100644
index 00000000..a79eeac5
--- /dev/null
+++ b/frontend/src/app/_data/FolderFile.ts
@@ -0,0 +1,13 @@
+export class FolderFile {
+ constructor(
+ public name: string,
+ public dateCreated: Date,
+ public lastUpdated: Date
+ ) { }
+}
+
+
+export enum FolderType {
+ Dataset,
+ Model
+} \ No newline at end of file
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index b273f56a..6281748c 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -1,12 +1,13 @@
import { NgIf } from "@angular/common";
+import { FolderFile } from "./FolderFile";
-export default class Model {
+export default class Model extends FolderFile {
_id: string = '';
constructor(
- public name: string = 'Novi model',
+ name: string = 'Novi model',
public description: string = '',
- public dateCreated: Date = new Date(),
- public lastUpdated: Date = new Date(),
+ dateCreated: Date = new Date(),
+ lastUpdated: Date = new Date(),
//public experimentId: string = '',
// Neural net training settings
@@ -14,17 +15,58 @@ export default class Model {
public optimizer: Optimizer = Optimizer.Adam,
public lossFunction: LossFunction = LossFunction.MeanSquaredError,
public inputNeurons: number = 1,
- public hiddenLayerNeurons: number = 1,
public hiddenLayers: number = 1,
- public batchSize: number = 5,
- public hiddenLayerActivationFunctions: string[] = ['sigmoid'],
+ public batchSize: BatchSize = BatchSize.O3,
public outputLayerActivationFunction: ActivationFunction = ActivationFunction.Sigmoid,
public uploaderId: string = '',
public metrics: string[] = [], // TODO add to add-model form
- public epochs: number = 5 // TODO add to add-model form
+ public epochs: number = 5, // TODO add to add-model form
+ public inputColNum: number = 5,
+ public learningRate: LearningRate = LearningRate.LR1,
+ public layers: Layer[] = [new Layer()]
+
+ ) {
+ super(name, dateCreated, lastUpdated);
+ }
+}
+export class Layer {
+ constructor(
+ public layerNumber: number = 0,
+ public activationFunction: ActivationFunction = ActivationFunction.Sigmoid,
+ public neurons: number = 3,
+ public regularisation: Regularisation = Regularisation.L1,
+ public regularisationRate: RegularisationRate = RegularisationRate.RR1,
) { }
}
-
+export enum LearningRate {
+ LR1 = '0.00001',
+ LR2 = '0.0001',
+ LR3 = '0.001',
+ LR4 = '0.003',
+ LR5 = '0.01',
+ LR6 = '0.03',
+ LR7 = '0.1',
+ LR8 = '0.3',
+ LR9 = '1',
+ LR10 = '3',
+ LR11 = '10',
+}
+export enum Regularisation {
+ L1 = 'l1',
+ L2 = 'l2'
+}
+export enum RegularisationRate {
+ RR1 = '0',
+ RR2 = '0.001',
+ RR3 = '0.003',
+ RR4 = '0.01',
+ RR5 = '0.03',
+ RR6 = '0.1',
+ RR7 = '0.3',
+ RR8 = '1',
+ RR9 = '3',
+ RR10 = '10',
+}
export enum ProblemType {
Regression = 'regresioni',
BinaryClassification = 'binarni-klasifikacioni',
@@ -157,3 +199,16 @@ export enum MetricsMultiClassification {
Recall = 'recall_score',
F1 = 'f1_score',
}
+
+export enum BatchSize {
+ O1 = '2',
+ O2 = '4',
+ O3 = '8',
+ O4 = '16',
+ O5 = '32',
+ O6 = '64',
+ O7 = '128',
+ O8 = '256',
+ O9 = '512',
+ O10 = '1024'
+} \ No newline at end of file