From fdd1bdcbe113c568dbeef4de6b9a5ad3c9652ef8 Mon Sep 17 00:00:00 2001 From: TAMARA JERINIC Date: Sat, 16 Apr 2022 19:42:35 +0200 Subject: Dodat zahtev za Ĩuvanje h5 fajla treniranog modela. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- backend/microservice/api/controller.py | 14 +++++- backend/microservice/api/newmlservice.py | 77 +++++++++++++++++--------------- 2 files changed, 55 insertions(+), 36 deletions(-) (limited to 'backend') diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py index d7564b70..d2b8ed2c 100644 --- a/backend/microservice/api/controller.py +++ b/backend/microservice/api/controller.py @@ -1,3 +1,4 @@ +from gc import callbacks import flask from flask import request, jsonify import newmlservice @@ -27,14 +28,25 @@ class train_callback(tf.keras.callbacks.Callback): @app.route('/train', methods = ['POST']) def train(): print("******************************TRAIN*************************************************") + f = request.files.get("file") data = pd.read_csv(f) paramsModel = json.loads(request.form["model"]) paramsExperiment = json.loads(request.form["experiment"]) paramsDataset = json.loads(request.form["dataset"]) #dataset, paramsModel, paramsExperiment, callback) - result = newmlservice.train(data, paramsModel, paramsExperiment, paramsDataset, train_callback) + filepath,result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback) + """ + f = request.json['filepath'] + dataset = pd.read_csv(f) + filepath,result=newmlservice.train(dataset,request.json['model'],train_callback) print(result) + """ + + url = config.api_url + "/file/h5" + files = {'file': open(filepath, 'rb')} + r=requests.post(url, files=files) + fileId=r.text return jsonify(result) @app.route('/predict', methods = ['POST']) diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 3427e287..e81192ab 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -1,5 +1,6 @@ from enum import unique from itertools import count +import os import pandas as pd from sklearn import datasets, multiclass import tensorflow as tf @@ -21,7 +22,7 @@ from sklearn.model_selection import train_test_split from dataclasses import dataclass import statistics as s from sklearn.metrics import roc_auc_score - +import matplotlib.pyplot as plt #from ann_visualizer.visualize import ann_viz; def returnColumnsInfo(dataset): dict=[] @@ -113,25 +114,25 @@ class TrainingResult: metrics: dict ''' -def train(dataset, params, callback): - problem_type = params["type"] +def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): + problem_type = paramsModel["type"] #print(problem_type) data = pd.DataFrame() #print(data) - for col in params["inputColumns"]: + for col in paramsExperiment["inputColumns"]: #print(col) data[col]=dataset[col] - output_column = params["columnToPredict"] + output_column = paramsExperiment["columnToPredict"] data[output_column] = dataset[output_column] #print(data) ###NULL - null_value_options = params["nullValues"] - null_values_replacers = params["nullValuesReplacers"] + null_value_options = paramsExperiment["nullValues"] + null_values_replacers = paramsExperiment["nullValuesReplacers"] if(null_value_options=='replace'): #print("replace null") # - dict=params['null_values_replacers'] + dict=null_values_replacers while(len(dict)>0): replace=dict.pop() col=replace['column'] @@ -154,7 +155,7 @@ def train(dataset, params, callback): data.pop(col) # ### Enkodiranje - encoding=params["encoding"] + encoding=paramsExperiment["encoding"] if(encoding=='label'): encoder=LabelEncoder() for col in data.columns: @@ -211,8 +212,8 @@ def train(dataset, params, callback): # # Podela na test i trening skupove # - test=params["randomTestSetDistribution"] - randomOrder = params["randomOrder"] + test=paramsExperiment["randomTestSetDistribution"] + randomOrder = paramsExperiment["randomOrder"] if(randomOrder): random=123 else: @@ -278,49 +279,54 @@ def train(dataset, params, callback): elif(reg['kernelType']=='l1l2'): activityreg=tf.keras.regularizers.l1_l2(l1=reg['activityRate'][0],l2=reg['activityRate'][1]) """ - + filepath=os.path.join("temp/",paramsExperiment['_id']+"_"+paramsModel['_id']) if(problem_type=='multi-klasifikacioni'): #print('multi') classifier=tf.keras.Sequential() - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog - for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog + for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja #print(i) - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj - classifier.add(tf.keras.layers.Dense(units=5, activation=params['outputLayerActivationFunction']))#izlazni sloj + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj + classifier.add(tf.keras.layers.Dense(units=5, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj - classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize']) hist=history.history - + plt.plot(hist['accuracy']) + plt.show() y_pred=classifier.predict(x_test) y_pred=np.argmax(y_pred,axis=1) scores = classifier.evaluate(x_test, y_test) #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100)) - classifier.save("temp/"+params['name'], save_format='h5') + + + classifier.save(filepath, save_format='h5') + #vizuelizacija u python-u #from ann_visualizer.visualize import ann_viz; #ann_viz(classifier, title="My neural network") - return hist + + return filepath,hist elif(problem_type=='binarni-klasifikacioni'): #print('*************************************************************************binarni') classifier=tf.keras.Sequential() - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog - for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog + for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja #print(i) - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj - classifier.add(tf.keras.layers.Dense(units=1, activation=params['outputLayerActivationFunction']))#izlazni sloj + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj + classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj - classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize']) hist=history.history y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -332,25 +338,26 @@ def train(dataset, params, callback): #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100)) #ann_viz(classifier, title="My neural network") - classifier.save("temp/"+params['name'], save_format='h5') - return hist + classifier.save(filepath, save_format='h5') + return filepath,hist elif(problem_type=='regresioni'): classifier=tf.keras.Sequential() - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog - for i in range(params['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][0],input_dim=x_train.shape[1]))#prvi skriveni + definisanje prethodnog-ulaznog + for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja #print(i) - classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj + classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj classifier.add(tf.keras.layers.Dense(units=1)) - classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize']) hist=history.history y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) - return hist + classifier.save(filepath, save_format='h5') + return filepath,hist def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"): #creating a set of all the unique classes using the actual class list -- cgit v1.2.3