{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "classificationFCNN.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "Dataset - Breast Cancer" ], "metadata": { "id": "MDfw3VTykAm8" } }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "f2CQaXKPjGwq" }, "outputs": [], "source": [ "from sklearn import datasets" ] }, { "cell_type": "code", "source": [ "data = datasets.load_breast_cancer()" ], "metadata": { "id": "4Hy86U_XjO9p" }, "execution_count": 2, "outputs": [] }, { "cell_type": "code", "source": [ "data.data" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "sCnT365mjO6u", "outputId": "3776c3de-94a4-4878-8a29-7b9310c76e3b" }, "execution_count": 3, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,\n", " 1.189e-01],\n", " [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,\n", " 8.902e-02],\n", " [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,\n", " 8.758e-02],\n", " ...,\n", " [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,\n", " 7.820e-02],\n", " [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,\n", " 1.240e-01],\n", " [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,\n", " 7.039e-02]])" ] }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "code", "source": [ "data.feature_names" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YXPHkptgjO4b", "outputId": "a277fb4a-c86e-402e-ae90-e303c34383e5" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',\n", " 'mean smoothness', 'mean compactness', 'mean concavity',\n", " 'mean concave points', 'mean symmetry', 'mean fractal dimension',\n", " 'radius error', 'texture error', 'perimeter error', 'area error',\n", " 'smoothness error', 'compactness error', 'concavity error',\n", " 'concave points error', 'symmetry error',\n", " 'fractal dimension error', 'worst radius', 'worst texture',\n", " 'worst perimeter', 'worst area', 'worst smoothness',\n", " 'worst compactness', 'worst concavity', 'worst concave points',\n", " 'worst symmetry', 'worst fractal dimension'], dtype=']" ] }, "metadata": {}, "execution_count": 26 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xU9Z3/8dcnM7nfIQFCQuQicguIGlG0XlovVatg1VXo2lV3W2u7bu1lt2t/7c/1V3d/vV/W1tq69rZaFe9Fi2utd0WQIHeQmyIk3AIJuSeTy3f/OJNkEiYQIMlkZt7Px2Me58z3fJP5MEzec+b7PeeMOecQEZHolxDpAkREZGAo0EVEYoQCXUQkRijQRURihAJdRCRG+CP1wHl5eW78+PGRengRkai0cuXKA865/HDbIhbo48ePp6ysLFIPLyISlczso762achFRCRGKNBFRGKEAl1EJEYo0EVEYoQCXUQkRijQRURihAJdRCRGRF2gl+2o4nsvvI8u+ysi0lPUBfr6ihp+9fp29tY2R7oUEZFhJeoCfWZRDgBry2siXImIyPASdYE+vSCLBPP21EVEpFvUBXpqko/JozJZp0AXEekh6gIdoKQwm/UVNZoYFREJEZWBPqsomwP1AfbUaGJURKRTVAZ6SWE2gIZdRERCRGWga2JURORw/Qp0M7vMzDab2TYzuzPM9pvNrNLMVgdvnxv4UrulJvk4ZbQmRkVEQh31G4vMzAfcB1wClAMrzGyxc25jr66LnHO3D0KNYZUUZvPq+/txzmFmQ/WwIiLDVn/20OcA25xzHzjnAsBjwPzBLevoZhZmc7BBE6MiIp36E+iFwK6Q++XBtt6uNbO1ZvakmY0L94vM7FYzKzOzssrKyuMot5smRkVEehqoSdHngPHOuVnAS8AfwnVyzj3gnCt1zpXm54f90up+m16QhS/BNDEqIhLUn0CvAEL3uIuCbV2ccwedcy3Buw8CZwxMeX3zzhjN0DVdRESC+hPoK4DJZjbBzJKABcDi0A5mVhBydx6waeBK7JvOGBUR6XbUQHfOtQG3Ay/iBfXjzrkNZvYdM5sX7PZlM9tgZmuALwM3D1bBoTQxKiLS7aiHLQI455YAS3q13RWy/k3gmwNb2tHNLOqeGB2bkzrUDy8iMqxE5ZminTonRtdpHF1EJLoDPSXRmxjVoYsiIlEe6KCJURGRTlEf6LOKNDEqIgIxEOidZ4zqeHQRiXdRH+g6Y1RExBP1ga6JURERT9QHOngnGK3TxKiIxLnYCPSibKoaAuzWxKiIxLGYCPSuS+lqYlRE4lhMBLomRkVEYiTQOydG1yrQRSSOxUSggzcxqjNGRSSexU6ga2JUROJc7AS6JkZFJM7FTKBP67yUbsWhSJciIhIRMRPo3WeM1ka6FBGRiIiZQAdNjIpIfIupQJ+liVERiWMxFejdZ4xqHF1E4k9MBXr3xKiOdBGR+BNTgZ6S6OOU0ZmaGBWRuBRTgQ4wszBLE6MiEpdiMNC9idGKQ02RLkVEZEjFXKB3TozqyosiEm9iLtCnFWTh18SoiMShmAv0lEQfkzUxKiJxKPoCvaMd9q47YpeZhVmsKz+kiVERiSvRF+ivfQ8euBCaqvvsMrMwm+rGVk2Mikhcib5An3IZdLTB5hf67DKzKAfQxKiIxJfoC/Sxp0P2ONj4pz67TB2TqYlREYk70RfoZjBtHmx/BZrDT3x2Toyu1ZddiEgcib5AB5g+H9oDsOXFPrvojFERiTf9CnQzu8zMNpvZNjO78wj9rjUzZ2alA1diGEVnQmYBbHy2zy4zi3I0MSoiceWogW5mPuA+4HJgOrDQzKaH6ZcJ3AEsH+giD5OQANOugm1/hZb6sF1m6oxREYkz/dlDnwNsc8594JwLAI8B88P0uwf4PjA03y4xfT60NcO2l8Ju7pwY1Ti6iMSL/gR6IbAr5H55sK2LmZ0OjHPO/flIv8jMbjWzMjMrq6ysPOZieyieC+n5sHFx2M3dl9JVoItIfDjhSVEzSwB+Anz9aH2dcw8450qdc6X5+fkn9sAJPph6pTcx2hp+nFzfMSoi8aQ/gV4BjAu5XxRs65QJlACvmdkO4Gxg8aBPjAJMnwetDbDt5bCbS4p0xqiIxI/+BPoKYLKZTTCzJGAB0DXO4Zyrcc7lOefGO+fGA8uAec65skGpONT48yA1FzaFH3aZ2fUdoxp2EZHYd9RAd861AbcDLwKbgMedcxvM7DtmNm+wCzwiXyJM/ZR3GYC2lsM264xREYkn/v50cs4tAZb0arurj74XnnhZx2DafFj1MHzwGpzyyR6bNDEqIvEkOs8UDTXxAkjO7vNol5mF2azTxKiIxIHoD3R/sncFxvefh/bWwzaXFGVzqLGV8mpNjIpIbIv+QAfvJKPmQ7DjzcM2zdIZoyISJ2Ij0Cd9ApIywl5Sd4omRkUkTsRGoCemwuRLYdPz3lfUhdDEqIjEi9gIdPCGXRoPwEdLD9ukiVERiQexE+iTLwF/athhl5maGBWROBA7gZ6UDpMvhk3PQUdHj026lK6IxIPYCXSA6VdD/V4of7dHc+fE6FoFuojEsNgK9MmXgi/psGGXlEQfU8Zkag9dRGJabAV6ShZMusg7a7TXBKgmRkUk1sVWoIN3Sd3acqh4r0dzSaEmRkUktsVeoE+5HBL8sKnnsEvXpXQ17CIiMSr2Aj01FyZe6I2jhwyvTC3IJNGnM0ZFJHbFXqADTJsH1Ttg79qupmS/d8aoJkZFJFbFZqBPvRLMd9gldTUxKiKxLDYDPX0kjD/3sGEXTYyKSCyLzUAH79ouB7dC5ftdTbOKNDEqIrErdgN96lWA9TjJaMoYTYyKSOyK3UDPHA3Fc3sEuiZGRSSWxW6ggzfssn8jHNja1TSzMJu15ZoYFZHYE9uBPu0qbxmyl37GSbnUNLXy3s5DESpKRGRwxHagZxdC0Zk9Av3ymQWkJ/l47N2dESxMRGTgxXaggzfssnctVH0IQEayn3mzC3lu7W5qm1sjXJyIyMCJ/UDvHHbZ1H2S0WfmFNPc2sGfVlVEqCgRkYEX+4GeOx4KZvc4a3RmUTYzxmbxx+U7NTkqIjEj9gMdvGGXijI4tKuraeGcYt7fW8each3CKCKxIX4CHbzvGw2aP3ssqYmaHBWR2BEfgT5yEowu6TGOnpmSyLxTx7J4zW7qNDkqIjEgPgIdvEvq7lwGdXu7mhaeVUxjoJ3Fa3ZHsDARkYERP4E+fT7gegy7nFqUzbSCLB7VsIuIxID4CfRRUyFvSo+TjMyMhXPGsb6ilnWaHBWRKBc/gQ7eF0h/9DY0HOhqmj+7kJTEBB7RXrqIRLl+BbqZXWZmm81sm5ndGWb7bWa2zsxWm9lbZjZ94EsdANPng+uA95/vaspOTeTKWWNZvLqC+pa2CBYnInJijhroZuYD7gMuB6YDC8ME9iPOuZnOudnAD4CfDHilA2F0CeRO6DHsAt4x6Q2Bdp7T5KiIRLH+7KHPAbY55z5wzgWAx4D5oR2cc7Uhd9OB4Xn6pZm3l/7hG1DbHd6nF+cwZXSmjkkXkajWn0AvBHaF3C8PtvVgZv9oZtvx9tC/HO4XmdmtZlZmZmWVlZXHU++JK73FW771s9C6WDhnHGvKa/TlFyIStQZsUtQ5d59zbhLwr8C3++jzgHOu1DlXmp+fP1APfWxyx8OpC2Hl76F2T1fzp08rItmfwGMrtJcuItGpP4FeAYwLuV8UbOvLY8DVJ1LUoDvv69DRBm//Z1dTdloin5pZwLOrdtMY0OSoiESf/gT6CmCymU0wsyRgAbA4tIOZTQ65+ylgK8PZiAkweyGs/N1hZ47Wt7Tx/Jo9R/hhEZHh6aiB7pxrA24HXgQ2AY875zaY2XfMbF6w2+1mtsHMVgNfA24atIoHynn/DO2tPfbSS0/K5eRRGTomXUSikr8/nZxzS4AlvdruClm/Y4DrGnwjJsCpC6Dst3DuHZA5Jjg5Wsw9z29k055aphVkRbpKEZF+i68zRXs77+vBvfR7u5quOa2QJH+CDmEUkagT34E+chLMugHKfgN1+wDITU/iipIxPL2qgqZAe4QLFBHpv/gOdIDzg2PpS7v30hfMKaauuY0/r9PkqIhEDwX6yEkw63pY8Ruo3w/AWRNGMDEvXZfVFZGookAHOP9foL2l64iXzsnRlR9Vs3lvXYSLExHpHwU6eHvpMzv30r1LElx7RhFJvgTtpYtI1FCgd+rcS1/q7aWPSE/ikyVjePq9cppbNTkqIsOfAr1T3skw82967KUvnDOO2uY2XlivyVERGf4U6KHO/xdoa+464mXuxJGMH5nGo8t3HeUHRUQiT4EeKm8ylFwHKx6EhgOYGQvmFPPujiq27dfkqIgMbwr03s7/F2htgqU/B+C6M4pI9BmPvqu9dBEZ3hToveWfAiXXwrv/BQ0HyctI5tLpY3hKk6MiMswp0MO54BvQ2gjveHvpC+cUc6ixlRc37D3KD4qIRI4CPZz8KVByDSx/ABoOcs6kkRSPSOOR5TomXUSGLwV6X87v3Ev/BQkJxoI541j+YRUfVNZHujIRkbAU6H0ZNRVmfBrefQAaq7jujCL8CcZjKzQ5KiLDkwL9SC74BgQa4J1fMCozhYunjebJleW0tGlyVESGHwX6kYyaBjOu9sbSG6tYeFYxVQ0B/rJhX6QrExE5jAL9aM7/BgTq4J37OO/kPApzUnXBLhEZlhToRzN6Oky/Gpb/moTmaj5zVjFLtx9k6bYDka5MRKQHBXp/XBDcS1/2S245dzwT89P52uNrqG4IRLoyEZEuCvT+GD0Dps2D5b8mrb2OexecxsGGFv7PM+twzkW6OhERQIHefxf8K7TUwrL7KSnM5uuXTuGF9Xt5vEyHMYrI8KBA768xJTDtKlh2PzRVc+t5Ezln0kjuXrxRJxuJyLCgQD8WXXvpvyIhwfjx9aeS5E/gK4tWE2jriHR1IhLnFOjHYsxMmHolLPsl1FRQkJ3K966ZydryGn721y2Rrk5E4pwC/VhdfDe4Dnj876CthctnFnBD6Tjuf30772w/GOnqRCSOKdCPVd5kmH8fVJTB/3wTgLuums74kel87fHV1DS2RrhAEYlXCvTjMeNqOOfLUPYbWP0I6cl+fnbDbCrrdCijiESOAv14XfRvMP48eP6rsGcNp47L4auXnMKf1+3hyZXlka5OROKQAv14+fxw3e8gbSQsuhEaq7jtgkmcNWEEdy/ewI4DDZGuUETijAL9RGTkw/UPQd1eeOpz+OjgpzfMxpdg3LFoNa3tOpRRRIaOAv1EFZ0Bl/8Atr8Mr32XsTmpfPeaWazZdYh7X94a6epEJI70K9DN7DIz22xm28zszjDbv2ZmG81srZm9bGYnDXypw9gZN8NpN8IbP4T3l/CpWQVcd0YR9726jXc/rIp0dSISJ44a6GbmA+4DLgemAwvNbHqvbquAUufcLOBJ4AcDXeiwZgZX/BgKZsMzX4CD27l73gzGjUjjq4tWU9OkQxlFZPD1Zw99DrDNOfeBcy4APAbMD+3gnHvVOdcYvLsMKBrYMqNAYgrc8BAk+GHRjWRYCz+7YTZ7a5v59rPrdSijiAy6/gR6IRB6ScHyYFtf/gF4IdwGM7vVzMrMrKyysrL/VUaLnGK47jdQ+T4s/idOG5fDVy6azHNrdvPMqopIVyciMW5AJ0XN7EagFPhhuO3OuQecc6XOudL8/PyBfOjhY9In4BPfhvVPwfJf8aWPn8yZ43O5608b2Hmw8eg/LyJynPoT6BXAuJD7RcG2HszsYuBbwDznXMvAlBelzv0qTPkU/OXb+Ha9w09vmI0Z3LFoFW06lFFEBkl/An0FMNnMJphZErAAWBzawcxOA36NF+b7B77MKJOQAJ++H3LHw+M3UeSr4T8+PZNVOw/x81e2Rbo6EYlRRw1051wbcDvwIrAJeNw5t8HMvmNm84LdfghkAE+Y2WozW9zHr4sfKdlww8MQaIAnbmLejDyuOa2Qn7+ylbIdOpRRRAaeReroi9LSUldWVhaRxx5S65+GJ2+BObdS94n/zxX3vklHBzxx21zG5qRGujoRiTJmttI5Vxpum84UHWwl18Dc2+HdB8jc/DS/WHg6tU2tXHv/Urbsq4t0dSISQxToQ+Hi/wcnfQyeu4NTE3ex6Atzae9wXHf/UlZo+EVEBogCfSj4/PA3v4PUXFh0I9Nz23nqi+eQl5nMjQ8u58UNeyNdoYjEAAX6UMkYBdf/N9RUwFOfZ1yWjydvO4dpBVl88eGVPLzso0hXKCJRToE+lMadCVf8ELa9BL+7ghFt+3nk82dx4ZRRfPvZ9fzkL5t1iQAROW4K9KFWeou3p165GX59Pmm73uSBz57B9aVF3PvKNu58ap1OPhKR46JAj4Tp8+HWVyE9Hx6+Bv/bP+H715Tw5U+czKKyXXzhoZU0BdojXaWIRBkFeqTkTYbPvQwzroFX7sEW3cjXzhvNPVeX8Mrm/XzmwWVUNwQiXaWIRBEFeiQlZ8C1D8Jl34etf4EHLuSz4+u4/29PZ8PuWq791VJ2VemCXiLSPwr0SDODs2+Dm/8Mbc3w4MVc1v46D//DWRyoa+Ha+5eycXdtpKsUkSigQB8uis+GL7wBRaXwzBeYs+HfefLzZ5Bgxg2/foel2w9EukIRGeYU6MNJxij47LNwzpeh7DecsuR6nv3sSYzJTuHm367g+bW7I12hiAxjCvThxueHS++B6x+Cyi2MefRSnrkswKnjsvmnR1fx+7c/jHSFIjJMKdCHq+nzgoc2jiLjiet5ZOrbfHJaPnc/t5HvvrBJx6qLyGEU6MNZ3mT4vHdoY+Jr/879/h/zudJcfv36B8z7xdus3nUo0hWKyDCiQB/uktK9Qxsv/wG27a98q+JLPPypNA42tPDpX77NXX9aT21za6SrFJFhQIEeDczgrC/AzUuwtmY+9toNvDn7Zb54Zg4PLfuIi3/8On9eu0fXgRGJcwr0aFJ8lndoY8m1JK34Fd94/wbemVvGSZnt/OMj73HL71foRCSROKZAjzYZo7wvoP7iOzDxAsa89xMeb/4Sj816jzUf7uWSn77OL1/bRqsmTUXijgI9Wo2aCgv+CJ97BRs9g7O3/Iiy7Dv55pgyfvw/G7ny3rdY+ZG+DUkknijQo13RGXDTYvjss/gyR3NT5Y9Yk/9vlDa8zrX3L+WbT6/lUKMu8iUSDxTosWLSx+Hzr8D1D5GRnMh/tP2Id0bcw+6VS7joR6/x7KoKTZqKxDiL1B95aWmpKysri8hjx7yOdljzGLz2XajZxbrEWdxVfy3pk+Zyz9UlTMhLj3SFInKczGylc6407DYFegxra4Gy3+He+CHWeIBXXSk/ar+BSy68kJvPGU9OWlKkKxSRY6RAj3ct9bDsfjre/k8I1LO4fS5PcRGjSy7iM3PHc9q4HMws0lWKSD8o0MXTWAVv/ZT2dx/E19bIXjeCxe1zWZt7CWef83GuPr2IjGR/pKsUkSNQoEtPgQbY/AJta57Atv8Vn2tje0cBL3AuLdOv5bLzz2XG2OxIVykiYSjQpW+NVbiNi6lf+Sjpe5aTgGNNx0TKMi9i1NyFXDxnNqlJvkhXKSJBCnTpn5oKmlY9QcPKx8ir20SHM1bYDPaddCUlF93IxOJxka5QJO4p0OWYucotVLz5EEmbnmZUazkB52NNyhxs1t8w8xPXk5yaGekSReKSAl2On3Mc2v4uH732BworlpDnqmkimZ3pJXQUn0vhqReRNelsSEyJdKUicUGBLgOio62N9UuXcOi9pxlz6D1O4SMAAiSyP6sE38TzGFVyEb7iM73ruIvIgFOgy4Dr6HBs/OAjPlj5V9yOtxjfsIYS+xCfOdrxcSh3JmmTzyN18gUw7ixIyYp0ySIx4YQD3cwuA/4T8AEPOue+12v7+cDPgFnAAufck0f7nQr02FLdEGDpxg+pWPsaieXvMLN9A7NsO0nWTgcJNI2cQerJ55Ew4WNQPBfSRkS6ZJGodEKBbmY+YAtwCVAOrAAWOuc2hvQZD2QB/wwsVqDHt44Ox/rdNby1cRd7N75B3oEy5iRs4rSEbSTjfV1eW8ZYfGNmYKOnw6gZMHo65J0C/uQIVy8yvB0p0PtzWuAcYJtz7oPgL3sMmA90Bbpzbkdwm75VQUhIMGYV5TCrKAcuncmhxgBvbj3A/91UwcGty5jcvJ4pNbsoadjChG2v4qcNAGc+bOTJXrh3hvyoaZAzHhJ0YVCRo+lPoBcCu0LulwNnDU45Eoty0pK46tSxXHXqWDo6Stm8r46yHVX8fEc1qz7cT3LdDqbaLmYmllPasJdJ298lZ8Mz3b8gMd37Qo9R02H0DMifCiMmQlYh+HSpApFOQ/rXYGa3ArcCFBcXD+VDyzCRkGBMK8hiWkEWn507HoCKQ02U7aiibEc1z+yoYvO+OlJdM1N9FXw8t5Iz0/ZycmAnI95fQsKqh0J+mR+yiyDnJMg9CXLHB9cnePfTRnpfsC0SJ/oT6BVA6CmCRcG2Y+acewB4ALwx9OP5HRJ7CnNSKZxdyPzZhQDUNLWyamc1ZTuqeWtHFb/YdYiWNm80b/aIAJfmVTMjrZqTfJWMattLakM5tvkFaKjs+YuTMsKE/UmQU+yFfWquxuwlpvQn0FcAk81sAl6QLwA+M6hVSVzLTk3kwimjuHDKKAACbR1s2F1D2Y5qVuyo4ne7MqmsGw1MBSAj2c/JozIoKU7gtKw6piRXUWz7yWwqxw7thKoP4YPXoLXx8AdLTIOUHC/cU0OWXW2h7bnB9hxIytRwjww7/T1s8Qq8wxJ9wG+dc/9hZt8Bypxzi83sTOAZIBdoBvY652Yc6XfqKBc5EdUNAbbsq2PL/nq27qtjy746tu6r52BD9/enZqb4OWV0JqeMzmByfgYzsgNMTjpAbus+rLkamqqh6VDwVg3NwWVne1vTkYvwp3gnUCWlewHftZ4OyZnhtyVneJ8cktKDy4zu9sR0Tf7KUenEIokbB+tb2LKvnq37vZDfss8L/OrG1q4+WSl+ThqZTvGINIpGpDIuN43iEWmMG5FGYU4qSf5gqLY2ecHeFfQhwd9SD4F671LEvZctoffrof0YvqQ7Ma1n4CeHCf/QW2Jaz2XXepr3BpGU5t3XXMLw0e4d1XW8n/BO9LBFkagxMiOZuRnJzJ00sqvNOceB+kDXnvy2ynp2VjWxcU8tL23cR6C9+2hbMyjISqFoRDDkc9MYNyKT4hGjGTc2jfyMZBISjjEc2wLQ2hAS9mHeCFr6eHMI1HtfTHJoV883iY62YyjAQkI+GPz+FG89MSW4nnpsS1+iNymd4APzBdf93W0JYdp69PNF9k2mo937isb2Fu//p8eyxXsT7rHs1a+tyXvD77z1vh+ura3ZG/braIMrfwaltwz4P0uBLjHPzMjPTCY/M5lzTs7rsa2jw7GvrpmdBxvZVd3EzqpGyqsa2VXdyJtbK9lX29Kjf5I/gaLcVAqyUxidlcKYrBTG9FrPy0jGFxr6/iTvlpo7cP+o0DeJQGNwvdELjECwvXO99zLQEAyXZu8TR2tzz/Bpa/Zug61H4AdvoW8UCYkh7b36uQ4vGLtu7X3c770M3lz7wPwbfMnem1zXLa37jS89P/gGmNqzjz8Vxp42MI/fiwJd4lpCglGQnUpBdmrYkyuaW9spr25iV7UX9DurGtlV1cTe2mbe2X6Q/XUttHf0HLb0JRj5GcmMye4V+NnJXcFfkJ16Yl8cMhhvEqGcC4Z+U69lMPyPJTj7DNvgrb1zvbV7e3trr59pC2lr9wI/MTXMJ4PguvXxKaFz6Uv2nr8ey2TwJXlLf/LhbV3L5OAnm9RhN+ehQBc5gpREHyePyuDkURlht7d3OA7Wt7C3tpm9Nc3sq2thX00ze2ub2VfbzPbKet7efoC65sOHSHLTEinITmVsjhfwBTkpjM329v7H5qQyOiulezx/qJl171FK1FCgi5wAX4IxKiuFUVkpzCrqu19DSxv7apu7gn9PTTN7aprYfaiZ8uomVuyopqaptcfPmEFeRjJjs3sFfk4K+RnJ5GUmk5eRTFaKH9Okp6BAFxkS6cl+JuZnMDE//J4+eKHfHfRe2O+paWJPTTNb99fxxtZKGgOHj/0m+RO8gM9IIi/DC/m8zKQeoZ+XkUx+RjJZqQr/WKZAFxkm0oMnSPU1vOOco7apjd01TRyob+FAfQuVdS0cqA9woK6FyvoWdtc0s7aihoP1LXSEOSI5yZfAyIwkRqR333LTgsv0JEb2uJ9IbloSib7hNU4sfVOgi0QJMyM7LZHstMSj9m3vcFQ3Brzgrwt0vwEE71c3BqhqCLCzqpGq+gB1LX0fBpmZ4veCPj2JEWneMjs1kayURLJT/WSnda4nkpWa2LUtJTFBnwaGmAJdJAb5EqxrqIUxR+8faOvgUGOAqmDQVze0UtXQQlVDa1f4VzcG2FvbzMY9tdQ2tdIQZvgnVJIvgaxUP1mp3YHvhb6/a727LZGc1CTvDSs1kfQkn94MjoMCXURI8id0Te72V2t7B3XNbdQ0tVLb1Ootm72l19bW1Vbb1MqhxgAfHWwItrUddrhnKH+Cde/t9wh/PzmpSWSm+MlMSQwu/b3ux+8bggJdRI5Loi+haxz+WDnnqG9p6wr/zjeFQ42tPdo6bz3eDJpaw84PhEow76JtnSGf1SP8vU8JWSmJPT49hLZlpvijcu5AgS4iQ87MgmGbSNExnhvlnKMh0E5dcyt1zW0hy7Ze94PLFm99b20zW/d760f7hACQluTrmg/o+QbgJz3ZT1qSj7QkP+nJPlKT/KQn+UhN8pGeFNyW3N2W5Bua+QQFuohEFTMjI9lPRrKfguzj+x3OORoD7cHhoO5ho87hodrm3m3eIaWb99V1zR8c7Q0hlD/BeoT9Vy45hXmnjj2+4o/0OAP+G0VEhjkzIz3Z29M+njcF5xyB9g6aAu00BNppCrTR0NJOQ6DtsLam1nYaWtpoDLTTGGijIdBObj+OVDoeCnQRkWNkZiT7fST7feSkRbqabtE36i8iImEp0EVEYoQCXUQkRijQRURihAJdRCRGKNBFRGKEAl1EJEYo0EVEYoQ51//TVwf0gQhTcgsAAAUpSURBVM0qgY+O88fzgAMDWM5AU30nRvWduOFeo+o7fic55/LDbYhYoJ8IMytzzpVGuo6+qL4To/pO3HCvUfUNDg25iIjECAW6iEiMiNZAfyDSBRyF6jsxqu/EDfcaVd8giMoxdBEROVy07qGLiEgvCnQRkRgxrAPdzC4zs81mts3M7gyzPdnMFgW3Lzez8UNY2zgze9XMNprZBjO7I0yfC82sxsxWB293DVV9wcffYWbrgo9dFma7mdm9wedvrZmdPoS1TQl5XlabWa2ZfaVXnyF//szst2a238zWh7SNMLOXzGxrcBn2WzDN7KZgn61mdtMQ1fZDM3s/+P/3jJnl9PGzR3wtDHKNd5tZRcj/4xV9/OwR/94Hsb5FIbXtMLPVffzskDyHJ8Q5NyxvgA/YDkwEkoA1wPRefb4E/Cq4vgBYNIT1FQCnB9czgS1h6rsQeD6Cz+EOIO8I268AXgAMOBtYHsH/6714J0xE9PkDzgdOB9aHtP0AuDO4fifw/TA/NwL4ILjMDa7nDkFtlwL+4Pr3w9XWn9fCINd4N/DP/XgNHPHvfbDq67X9x8BdkXwOT+Q2nPfQ5wDbnHMfOOcCwGPA/F595gN/CK4/CVxkQ/HV2oBzbo9z7r3geh2wCSgcisceQPOB/3aeZUCOmRVEoI6LgO3OueM9c3jAOOfeAKp6NYe+zv4AXB3mRz8JvOScq3LOVQMvAZcNdm3Oub8459qCd5cBRQP5mMeqj+evP/rz937CjlRfMDuuBx4d6McdKsM50AuBXSH3yzk8MLv6BF/UNcDIIakuRHCo5zRgeZjNc81sjZm9YGYzhrQwcMBfzGylmd0aZnt/nuOhsIC+/4gi+fx1Gu2c2xNc3wuMDtNnODyXf4/3iSuco70WBtvtwWGh3/YxZDUcnr/zgH3Oua19bI/0c3hUwznQo4KZZQBPAV9xztX22vwe3jDCqcDPgWeHuLyPOedOBy4H/tHMzh/ixz8qM0sC5gFPhNkc6efvMM777D3sjvU1s28BbcAf++gSydfC/cAkYDawB29YYzhayJH3zof939NwDvQKYFzI/aJgW9g+ZuYHsoGDQ1Kd95iJeGH+R+fc0723O+dqnXP1wfUlQKKZ5Q1Vfc65iuByP/AM3sfaUP15jgfb5cB7zrl9vTdE+vkLsa9zKCq43B+mT8SeSzO7GbgS+NvgG85h+vFaGDTOuX3OuXbnXAfwX308dkRfi8H8uAZY1FefSD6H/TWcA30FMNnMJgT34hYAi3v1WQx0Hk1wHfBKXy/ogRYcb/sNsMk595M++ozpHNM3szl4z/eQvOGYWbqZZXau402ere/VbTHwd8GjXc4GakKGFoZKn3tFkXz+egl9nd0E/ClMnxeBS80sNzikcGmwbVCZ2WXAN4B5zrnGPvr057UwmDWGzst8uo/H7s/f+2C6GHjfOVcebmOkn8N+i/Ss7JFueEdhbMGb/f5WsO07eC9egBS8j+rbgHeBiUNY28fwPnqvBVYHb1cAtwG3BfvcDmzAm7FfBpwzhPVNDD7ummANnc9faH0G3Bd8ftcBpUP8/5uOF9DZIW0Rff7w3lz2AK1447j/gDcv8zKwFfgrMCLYtxR4MORn/z74WtwG3DJEtW3DG3vufA12HvU1FlhypNfCED5/DwVfX2vxQrqgd43B+4f9vQ9FfcH233e+7kL6RuQ5PJGbTv0XEYkRw3nIRUREjoECXUQkRijQRURihAJdRCRGKNBFRGKEAl1EJEYo0EVEYsT/AhtwGSiBacy1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "plt.plot(epochs, history.history['accuracy'])\n", "plt.plot(epochs, history.history['val_accuracy'])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 283 }, "id": "kZxs-3kyj4UC", "outputId": "5af03c64-2d39-466a-c526-88de3e862ef8" }, "execution_count": 27, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 27 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAe40lEQVR4nO3de3xU5b3v8c8vdyAJCSZCLiCiIAQVpBG11kvrjaLWqrVHPbbedt29aGtru7fd9ViPPdrTy+6x7Xa3tVuqdrdSK1hpi/Wuba0XEBAh3CJayRAgQG6QCbnMc/6YlXSMCQxkkjVZ6/t+vfLKzFrPmvmxmHzz5FnPWsucc4iISHBl+F2AiIgMLQW9iEjAKehFRAJOQS8iEnAKehGRgMvyu4C+SkpK3OTJk/0uQ0RkRHn99dd3OudK+1uXdkE/efJkli9f7ncZIiIjipn9faB1GroREQk4Bb2ISMAp6EVEAk5BLyIScAp6EZGAU9CLiAScgl5EJODSbh69+KS7C1b9NzRH/K5EJLwKy6H62pS/rIJe4uG++DPw95e8BeZrOSKhVVmtoJchsH4pPP556OqAi38Gsy73uyIRSTEFfVh1tsPTt8NrP4OyWfCJX8BhR/ldlUjotHV0sX5bK+vqW8jOyOCTJ05M+Xso6MNo5yb47bWw/U04+fNw9h2Qlet3VSKB5pyjvrmddfUt3lc83N/etZeeO7rOqhyroJdBcg5W/RqWfi0e7Fc+AtPO87sqkcDZ19XNpu17qOkN9XiwN0c7e9tMGjeaGWUFXDS7ghllBcwoK6SyeNSQ1KOgD4v2FvjjV+DN38Lk0+CS++JH+AWAbc3t/GH1Vhr27PO7lEEpzc+lqqyQGWWFFI/J8bucUGho3ZcQ5vFAr23YQ3cs3k3Py85g+oRC5h9XRpUX6MdMKKAgL3vYalTQh0FkBTx6HTT9HT58G5z2FcjI9Lsq37V1dPHU2u0sWlHHX2t34hzkZo3cU0sc0NEV631eNjaPGWWFvb3FGWWFTD5sDJkZmlV1KLq6Y2zeuZd19S3UbG3xeuut7EzoHPTs87OrDk+rfa6gD7JYDF75T3jmDsgfD9cshSNO8bsqX8Vijlfe3sXiFRGeeLOevR3dVBaP4qaPTOWSEyqYXDLG7xIHpb/e5YsbG3p7l6OyM5k2oYCqssLe3uX0skLycxUFiZrbOt877LKthY3b9/T+Is3JzODow/M5Y1opM8oKqCovZMaE9P0rylzPUYA0UV1d7XTjkRTY0wC/+xzUPg3TL4CP/RhGj/O7Kt+81bCHx1ZEeGxlhEhTlPzcLM4/roxL5lRw4uRxZAS4l3sw48WlBeE9KO8cbG9pZ119K5GmaO/yw8bkMKOsMB7m3i/Ho0rzyc5Mr7/+zOx151x1v+sU9AG0+QVYfANEm2De3VB9PVhwg2wgTW0d/P6NrSxaEWHVliYyDE6bWsolcyo4t2oCo3LCO3zVdwZITX0L6/uEfxiN80K9Z8irqqyQ0oJcbAT8/Owv6PX3WpB0d8ELd8NffgAl0+CqxTDhWL+rGlYdXTFe2LCDxSsiPLt+O53djukTCvjG/BlcNLucwwvz/C4xLZgZ5UWjKC8axVkzxvtdjgwxBX1QNL0Li/4JtrwKJ3wKPvodyBnZ483J2LOviw3bWqipb2VtpJmnaraze28HJfk5fPqUyVwyp4KqssIR0SMTGSoK+iCoeRyW3BQfZLz0fjjuE35XlHLOOSJN0d6TTGq2xg+Q/X1XW2+bwrwsTptayqUfqOC0qaVpN4Yq4hcF/UjWGYU/fR1e/wVUfCAe8uOO9LuqQWvv7Gbj9tbeg4bx8eMWWtq7ettMPmw0VWWFXDqnsvdAWfnYPPXcRfqhoB+pdqyLz43fUQOnfik+Pz4rPad2DcQ5R0Prvt75yD0HBjfv3Ns7HXB0TibHTCjgglnlvScCTZ9QwBhNBxRJmn5aRhrnYMWD8MStkJsPVy2Co8/2u6oD6uyO8VbDnvdc46Nmawu79nb0tikfm0dVeSHzjp3QO/PhiHGjAz31UWQ4KOhHkmgT/P5LUPM7mPLh+GWFC9JvxkRTWwc1PePoXqjX7thDR7d3sklWBtPG5/OR6Ye/Zypb0eiR9ReJyEihoB8ptiyDRddBy1Y4+3/DB78IGelzsLF2xx5+9Owmlr2zm/rm9t7lJfm5zCgr4LRpk3uHXqaUjCFLB0pFho2CPt3FYvDSPfDc/4GxFXDtn2DiiX5X1auhdR8/fHYjD7+2hVHZmZw9I7GXXhjqMy1F0oWCPp21bofHboif6TrzYrjgHhhV5HdVAEQ7urn/r5v5yQtvsa8rxlUnTeKLZ03lsHwFu0i6UdCnq9pn4LHPwr49cOGPYM6n0+IyBt0xx6IVdfzgqY1sa2nnvJnj+dd505lSmu93aSIyAAV9uunqgOe+BX/7ERxeBVf/AQ6f7ndVAPx5YwN3L13H+m2tzJpYxI+vPIETJ4f3QmkiI4WCPpW6OqAreuB2A2ndFu/Fb10B1dfBeXdD9tDcceZgrKtv4e6l6/jLpp1MHDeKH19xAhccX6aTk0RGCAV9qrQ3ww9nQ3T34F4nbyx88iGouig1dQ3CtuZ2/v2pDTy6oo7CvGxuO38GnzrlCHKzwnvVR5GRSEGfKuuXxkP+Q1+BMSWH9hqWCdPPh6LU3xz4YOzZ18XPXnyLn/9lM7EY/NOHjuTGD09l7Ojhu/WZiKSOgj5V1i6GsZPgrNvT4qDpoejqjrFw2RbueWYjO/d0cOGscv7lvGOYOG6036WJyCAo6FOhbTe89Ryc/PkRG/KRpijXP7CM9dtamTt5HP919QxmT0yPqZwiMjgK+lRY93uIdcGxl/pdySGp3dHKp+5/jT3tXfz0qjmcN3OCDrSKBIiCPhXWLoZxU6Bslt+VHLQ3tjRxzS9eIzMjg4X/fDIzy8f6XZKIpJguODJYe3bA23+O9+ZHWC/4r5t2csXPXyE/L4tFnztFIS8SUOrRD1bN4+BiMPMSvys5KEvfrOfmhauYUjqGh66bq3upigSYgn6w1iyG0ukwvsrvSpL261ff5Ru/e5M5k4pZcPWJmjYpEnBJDd2Y2Twz22BmtWZ2az/rjzCzZ81stZm9YGaVCeu6zWyV97UklcX7rjkC7748Yg7COue49/la/u2xNzljWin/ff1JCnmREDhgj97MMoF7gXOAOmCZmS1xztUkNPs+8JBz7kEz+wjwbeBT3rqoc252iutODzW/A9yIGLaJxRx3LV3H/X99m4/PLud7l83SzbNFQiKZn/S5QK1zbrNzrgNYCPQ9P78KeM57/Hw/64NpzWKYcDyUHO13JfvV2R3jq799g/v/+jbXfHAyP/jkbIW8SIgk89NeAWxJeF7nLUv0BtDTrb0YKDCzw7zneWa23MxeMbOP9/cGZnaD12Z5Q0PDQZTvo8Z3ILIcjk3v3nx7Zzef/eXrLF4Z4ZZzpvHNC6t0D1aRkElVt+6rwBlmthI4A4gA3d66I5xz1cCVwD1mdlTfjZ1z9znnqp1z1aWlpSkqaYitfSz+PY2HbZqjnXz6/td4bsMOvvXxY7nprKk6EUokhJKZdRMBEq+yVekt6+Wc24rXozezfOBS51yTty7ifd9sZi8AJwBvDbpyv61ZDBXVUHyE35X0a0drO1cvWEbtjlbvssLlfpckIj5Jpke/DJhqZkeaWQ5wOfCe2TNmVmJmPa/1dWCBt7zYzHJ72gCnAokHcUemnbWwbXXazrZ5d1cbl/30Zd7ZuZf7rz5RIS8Scgfs0TvnuszsRuBJIBNY4Jxba2Z3Asudc0uAM4Fvm5kD/gx8wdt8BvAzM4sR/6Xyf/vM1hmZ1i4GDGb2e8jBV+vqW/j0gtfo7I7xq8+cxJxJxX6XJCI+M+ec3zW8R3V1tVu+fLnfZezfvSfBqHFw3RMpfdnGvR00RTsPeft3du3liw+vZExOFr+8fi5TxxeksDoRSWdm9rp3PPR9dGbswdpeAw3rYf73U/aSzjke/Ns73L10PR3dsUG91pSSMTx0/Vwqi3UNeRGJU9AfrDWLwDJSdqu/prYOvvboap6u2c5Z0w/nwlmHPp6ekWGcPrWEotE5KalNRIJBQX8wnIuPzx95OuQfPuiXW/7Obr748Eoa9uzjf11QxXWnTtb0RxFJOQX9wahfBbs3w6k3D+plumOOn7xQy/97ZhOVxaNY9LkPcnyl7uYkIkNDQX8w1iyGjCyYceEhv8SOlna+/MgqXqrdxcdmlXPXxcdSkKcLi4nI0FHQJ8u5+NmwR30ERo87pJd4cWMDtzyyij37uvjupcdzWXWlhmpEZMgp6JNVtwyat8BHbjvoTTu7Y3z/qQ387MXNHDO+gIc/c7KmPorIsFHQJ2vNYsjMhWPmH9RmW3a3cdPDK1m1pYkrT5rE7RdUkZedOURFioi8n4I+GbHu+LDN1HMgrzDpzZ54s55/WbQaHNx75RzOP75sCIsUEemfgj4Z774Me7YlfUni9s5uvvWHGn716rvMmljEf1xxAhPH6QQmEfGHgj4ZaxZB9miYNu+ATWt3tHLjr1eyflsr/3z6FG459xhysnSTDxHxj4L+QLq7oObxeMjnjBmwmXOO375exzcfX8uonEx+ce2JfPiYwZ9UJSIyWAr6A3n7RWjbtd9hmz37uvjGY2/y+KqtnDLlMO65fDbjC/OGsUgRkYEp6A9k7WLIKYCjz+l39ZpIMzf+egXv7m7jK+dM4wsfPppM3apPRNKIgn5/ujpg3e9h+vmQ/d4eunOOX7z0Dt9+Yh0l+bksvOEU5h55aCdSiYgMJQX9/rz1HLQ3v+9OUo17O/jao2/wzLodnD1jPN/7xPEUj9EVI0UkPSno92ftYsgrgiln9i567e3dfGnhSnbu2cftF1Rxra44KSJpTkE/kM4orP9j/CBsVg7dMce9z9dyzzMbmTRuNIs/dyrHVY71u0oRkQNS0A9k09PQsQdmXsL2lnZuXriKlzfv4qLZ5dx18XHk52rXicjIoLQayJpFMLqEFzqO4ZYf/oW2jm6++4njuewDuuKkiIwsCvr+7NuD2/gkK8bN55oHVzJ9QgH/ceUJHH24rjgpIiOPgr4fO1c8TklXlO9sqeKqkydx2/m64qSIjFwK+j7+uLqeUX9awEwr5porrmD+8RV+lyQiMigK+gR3LFnL4r+t5fW8VbTPvlYhLyKBoMsqerY1t/PA397h347aTDZdFFRf7ndJIiIpoaD31DW2AXBO7G9QNAkqPuBzRSIiqaGg90SaohTRyrjtL8HMS0BTKEUkIBT0nrrGKPMyl2GxrqTvJCUiMhIE52Bsdxfs2nTIm3du28hl2S/BuKNgwvEpLExExF/BCfr2JvjPkw9585t7Hhz3rxq2EZFACU7Q5xbAZQ8c8ubf+kMNhxWO4fOnfiZ1NYmIpIHgBH1WLsy8+JA2dc7x8G9G8T+qJu73vrAiIiORDsYCTW2dtHV0U1E0yu9SRERSTkFPfGolQGWxgl5EgkdBT3xqJUBF0WifKxERST0FPf/o0ZcX5R2gpYjIyKOgByKNUfKyMxinG3yLSAAp6IFIUxsVRaN05ygRCaSkgt7M5pnZBjOrNbNb+1l/hJk9a2arzewFM6tMWHe1mW3yvq5OZfGpEmmKUlGs8XkRCaYDBr2ZZQL3Ah8FqoArzKyqT7PvAw85544H7gS+7W07DvgmcBIwF/immRWnrvzUiDRGNbVSRAIrmR79XKDWObfZOdcBLAQu6tOmCnjOe/x8wvrzgKedc7udc43A08C8wZedOm0dXTS2dWpqpYgEVjJBXwFsSXhe5y1L9AbQc8nHi4ECMzssyW0xsxvMbLmZLW9oaEi29pTY2tQztVJBLyLBlKqDsV8FzjCzlcAZQAToTnZj59x9zrlq51x1aWlpikpKTu8cevXoRSSgkrnWTQSYmPC80lvWyzm3Fa9Hb2b5wKXOuSYziwBn9tn2hUHUm3IR9ehFJOCS6dEvA6aa2ZFmlgNcDixJbGBmJWbW81pfBxZ4j58EzjWzYu8g7LnesrQRaYySmWGML9TJUiISTAcMeudcF3Aj8YBeBzzinFtrZnea2ce8ZmcCG8xsIzAeuMvbdjfwLeK/LJYBd3rL0kakKcqEwjwyMzSHXkSCKanLFDvnlgJL+yy7PeHxo8CjA2y7gH/08NNOpDGq8XkRCbTQnxkbaYpSqfF5EQmwUAd9Z3eM7S3t6tGLSKCFOui3NbcTc5pxIyLBFuqg751aqR69iARYuIO+UXPoRST4wh30vTccUdCLSHCFO+gbo5Tk55KXnel3KSIiQybcQd+kOfQiEnwKet0nVkQCLrRBH4s5L+jVoxeRYAtt0O/cu4+OrpiCXkQCL7RB3zu1UveKFZGAC2/Q6zr0IhISoQ36rTorVkRCIrRBH2mMUpCbxdhR2X6XIiIypMIb9JpDLyIhEdqgr2vU1EoRCYfQBr169CISFqEM+pb2Tlrbu3QxMxEJhVAGvS5PLCJhEu6g19CNiIRAOIPem0Ovm4KLSBiENuhzMjMoyc/1uxQRkSEX2qAvL8ojI8P8LkVEZMiFM+gbNbVSRMIjnEGv69CLSIiELujbO7tpaN1HRZEuTywi4RC6oK9vbgc0tVJEwiN0Qd8zh75c94oVkZAIX9A3tQFQqaEbEQmJ8AV9YxQzmDBWPXoRCYfQBX1dU5TxBXnkZIXuny4iIRW6tNMcehEJm9AF/dZmzaEXkXAJVdB3xxz1Te3q0YtIqIQq6He0ttMVc+rRi0iohCrodR16EQmjcAW9rkMvIiGUVNCb2Twz22BmtWZ2az/rJ5nZ82a20sxWm9l8b/lkM4ua2Srv66ep/gccjLres2IV9CISHlkHamBmmcC9wDlAHbDMzJY452oSmt0GPOKc+4mZVQFLgcneurecc7NTW/ahiTRFKRqdzZjcA/6zRUQCI5ke/Vyg1jm32TnXASwELurTxgGF3uOxwNbUlZg6kUZNrRSR8Ekm6CuALQnP67xlie4ArjKzOuK9+ZsS1h3pDem8aGan9fcGZnaDmS03s+UNDQ3JV3+QdB16EQmjVB2MvQJ4wDlXCcwHfmlmGUA9MMk5dwLwFeDXZlbYd2Pn3H3OuWrnXHVpaWmKSnrfe+isWBEJpWSCPgJMTHhe6S1LdD3wCIBz7mUgDyhxzu1zzu3ylr8OvAVMG2zRh6KprZNoZ7d69CISOskE/TJgqpkdaWY5wOXAkj5t3gXOAjCzGcSDvsHMSr2DuZjZFGAqsDlVxR+M3qmV6tGLSMgccPqJc67LzG4EngQygQXOubVmdiew3Dm3BLgF+LmZfZn4gdlrnHPOzE4H7jSzTiAGfNY5t3vI/jX70TO1UrcQFJGwSWqeoXNuKfGDrInLbk94XAOc2s92i4BFg6wxJXp69BqjF5GwCc2ZsZHGKKOyMykene13KSIiwyo8Qd/URnlRHmbmdykiIsMqREEfpaJY4/MiEj7hCXqdFSsiIRWKoG/r6KKxrVNTK0UklEIR9L3XoVePXkRCKBxBr6mVIhJi4Qp69ehFJITCEfSNUbIyjPGFeX6XIiIy7MIR9E1RJozNIzNDc+hFJHzCEfSaWikiIRaOoNcNR0QkxAIf9J3dMba3tGvGjYiEVuCDfltzOzGnGTciEl6BD/re69CrRy8iIRX4oNccehEJu8AH/VYv6MsV9CISUoEP+khjlJL8XPKyM/0uRUTEF8EP+qaoxudFJNRCEfSVGrYRkRALdNDHYk49ehEJvUAH/c69++joimnGjYiEWqCDvueGI5pxIyJhFuyg1xx6EZGAB73OihURCXjQN0UpyM1i7Khsv0sREfFNoIN+q2bciIgEO+jrdMMREZFgB73m0IuIBDjoW9o7aW3vUo9eREIvsEGvGTciInHBD3r16EUk5IIb9DpZSkQECHjQ52RmUJKf63cpIiK+Cm7QN0YpL8ojI8P8LkVExFeBDfo6Ta0UEQECHPRbm3SylIgIBDTo2zu7aWjdR0XRaL9LERHxXVJBb2bzzGyDmdWa2a39rJ9kZs+b2UozW21m8xPWfd3bboOZnZfK4gdS39wOaA69iAhA1oEamFkmcC9wDlAHLDOzJc65moRmtwGPOOd+YmZVwFJgsvf4cmAmUA48Y2bTnHPdqf6HJNIcehGRf0imRz8XqHXObXbOdQALgYv6tHFAofd4LLDVe3wRsNA5t8859zZQ673ekIo0tQFQqR69iEhSQV8BbEl4XuctS3QHcJWZ1RHvzd90ENtiZjeY2XIzW97Q0JBk6QOLNEYxgwlj8wb9WiIiI12qDsZeATzgnKsE5gO/NLOkX9s5d59zrto5V11aWjroYuqaoowvyCM7M5DHmkVEDsoBx+iBCDAx4XmltyzR9cA8AOfcy2aWB5QkuW3KRRo1h15EpEcyXd5lwFQzO9LMcogfXF3Sp827wFkAZjYDyAMavHaXm1mumR0JTAVeS1XxA4loDr2ISK8D9uidc11mdiPwJJAJLHDOrTWzO4HlzrklwC3Az83sy8QPzF7jnHPAWjN7BKgBuoAvDPWMm+6YY1tzu3r0IiKeZIZucM4tJX6QNXHZ7QmPa4BTB9j2LuCuQdR4UHa0ttMVc+rRi4h4Ane0UjccERF5r+AFvXcd+kr16EVEgAAGfZ169CIi7xG4oI80RSkenc3onKQOP4iIBF7wgl5z6EVE3iN4Qd8UpXysgl5EpEeggt45px69iEgfgQr6xrZOop3dmkMvIpIgUEHfM4delycWEfmHYAV9U88NR3QLQRGRHsEMevXoRUR6BSvoG6OMys6keHS236WIiKSNYAV9UxsVxaMwM79LERFJGwELel2HXkSkr2AFvebQi4i8T2CCvq2ji8a2TvXoRUT6CEzQRzu6uXBWOcdVjPW7FBGRtBKYSzwelp/Lj684we8yRETSTmB69CIi0j8FvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBJyCXkQk4BT0IiIBZ845v2t4DzNrAP4+iJcoAXamqJyhoPoGR/UNjuobnHSu7wjnXGl/K9Iu6AfLzJY756r9rmMgqm9wVN/gqL7BSff6BqKhGxGRgFPQi4gEXBCD/j6/CzgA1Tc4qm9wVN/gpHt9/QrcGL2IiLxXEHv0IiKSQEEvIhJwIzLozWyemW0ws1ozu7Wf9blm9htv/atmNnkYa5toZs+bWY2ZrTWzL/XT5kwzazazVd7X7cNVX0IN75jZm977L+9nvZnZj7x9uNrM5gxjbcck7JtVZtZiZjf3aTOs+9DMFpjZDjNbk7BsnJk9bWabvO/FA2x7tddmk5ldPYz1fc/M1nv/f4+ZWdEA2+73szCE9d1hZpGE/8P5A2y735/3IazvNwm1vWNmqwbYdsj336A550bUF5AJvAVMAXKAN4CqPm0+D/zUe3w58JthrK8MmOM9LgA29lPfmcAffN6P7wAl+1k/H3gCMOBk4FUf/7+3ET8ZxLd9CJwOzAHWJCz7LnCr9/hW4Dv9bDcO2Ox9L/YeFw9TfecCWd7j7/RXXzKfhSGs7w7gq0n8/+/3532o6uuz/t+B2/3af4P9Gok9+rlArXNus3OuA1gIXNSnzUXAg97jR4GzzMyGozjnXL1zboX3uBVYB1QMx3un2EXAQy7uFaDIzMp8qOMs4C3n3GDOlh4059yfgd19Fid+zh4EPt7PpucBTzvndjvnGoGngXnDUZ9z7innXJf39BWgMtXvm6wB9l8ykvl5H7T91edlxyeBh1P9vsNlJAZ9BbAl4Xkd7w/S3jbeB70ZOGxYqkvgDRmdALzaz+pTzOwNM3vCzGYOa2FxDnjKzF43sxv6WZ/Mfh4OlzPwD5jf+3C8c67ee7wNGN9Pm3TZj9cR/wutPwf6LAylG72hpQUDDH2lw/47DdjunNs0wHo/919SRmLQjwhmlg8sAm52zrX0Wb2C+FDELODHwO+Guz7gQ865OcBHgS+Y2ek+1LBfZpYDfAz4bT+r02Ef9nLxv+HTcq6ymX0D6AJ+NUATvz4LPwGOAmYD9cSHR9LRFey/N5/2P0sjMegjwMSE55Xesn7bmFkWMBbYNSzVxd8zm3jI/8o5t7jveudci3Nuj/d4KZBtZiXDVZ/3vhHv+w7gMeJ/IidKZj8PtY8CK5xz2/uuSId9CGzvGc7yvu/op42v+9HMrgEuAP6n98vofZL4LAwJ59x251y3cy4G/HyA9/V7/2UBlwC/GaiNX/vvYIzEoF8GTDWzI70e3+XAkj5tlgA9sxs+ATw30Ic81bzxvPuBdc65HwzQZkLPMQMzm0v8/2E4fxGNMbOCnsfED9qt6dNsCfBpb/bNyUBzwjDFcBmwJ+X3PvQkfs6uBh7vp82TwLlmVuwNTZzrLRtyZjYP+BfgY865tgHaJPNZGKr6Eo/5XDzA+ybz8z6UzgbWO+fq+lvp5/47KH4fDT6UL+IzQjYSPxr/DW/ZncQ/0AB5xP/crwVeA6YMY20fIv4n/Gpglfc1H/gs8FmvzY3AWuIzCF4BPjjM+2+K995veHX07MPEGg2419vHbwLVw1zjGOLBPTZhmW/7kPgvnHqgk/g48fXEj/s8C2wCngHGeW2rgf9K2PY677NYC1w7jPXVEh/f7vkc9sxEKweW7u+zMEz1/dL7bK0mHt5lfevznr/v53046vOWP9DzmUtoO+z7b7BfugSCiEjAjcShGxEROQgKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwP1/Cvw71R5A1LwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "model.evaluate(X_test, y_test, batch_size=64)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3_3CjReGj4K5", "outputId": "4408ca17-bb23-4454-a0e4-67210a16fe09" }, "execution_count": 28, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "3/3 [==============================] - 0s 8ms/step - loss: 0.0708 - accuracy: 0.9766\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "[0.07082781940698624, 0.9766082167625427]" ] }, "metadata": {}, "execution_count": 28 } ] } ] }