aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDESKTOP-S0O2C44\ROG <ivan996sk@gmail.com>2022-03-16 22:45:47 +0100
committerDESKTOP-S0O2C44\ROG <ivan996sk@gmail.com>2022-03-16 22:45:47 +0100
commit5ed7414d83bacf3648a6ea194f072652bfa03b25 (patch)
tree42c4c3ce4095f4d1af5dad6d2620ef4ef9cda692
parent3541c23e1cb953f9669ec07dd6eab710ee8faf1c (diff)
parent8ac9eb2404ac00397be35fce4aee7adc1f261875 (diff)
Merge branch 'dev' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into dev
-rw-r--r--backend/microservice/PythonServer/project/api/api.py14
-rw-r--r--backend/microservice/PythonServer/project/api/socket/client.py10
-rw-r--r--backend/microservice/PythonServer/project/api/socket/server.py16
-rw-r--r--backend/microservice/PythonServer/project/api/socket2/client.py16
-rw-r--r--backend/microservice/PythonServer/project/api/socket2/server.py39
-rw-r--r--backend/microservice/mlservice.py335
-rw-r--r--frontend/src/app/_data/Model.ts2
-rw-r--r--frontend/src/app/_elements/dataset-load/dataset-load.component.html94
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.css6
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.html276
-rw-r--r--frontend/src/app/_pages/add-model/add-model.component.ts23
-rw-r--r--frontend/src/app/_services/models.service.ts7
12 files changed, 676 insertions, 162 deletions
diff --git a/backend/microservice/PythonServer/project/api/api.py b/backend/microservice/PythonServer/project/api/api.py
index 1f4afdeb..b2fb503b 100644
--- a/backend/microservice/PythonServer/project/api/api.py
+++ b/backend/microservice/PythonServer/project/api/api.py
@@ -7,7 +7,8 @@ import pandas as pd
import keras
import csv
import json
-
+import mlservice
+from mlservice import obuka
app = flask.Flask(__name__)
app.config["DEBUG"] = True
@@ -20,13 +21,8 @@ def index():
@app.route('/data', methods = ['GET', 'POST'])
def data():
if request.method == 'POST':
- f = request.json['filepath']
- data = []
- with open(f) as file:
- csvfile = csv.reader(file)
- for row in csvfile:
- data.append(row)
- data = pd.DataFrame(data)
+ f = request.json['filepath']
+ data = pd.read_csv(f)
print(data)
- return render_template('data.html', data = data.to_html(header=False, index=False))
+ return obuka(data,request.json)
app.run() \ No newline at end of file
diff --git a/backend/microservice/PythonServer/project/api/socket/client.py b/backend/microservice/PythonServer/project/api/socket/client.py
new file mode 100644
index 00000000..d5740e25
--- /dev/null
+++ b/backend/microservice/PythonServer/project/api/socket/client.py
@@ -0,0 +1,10 @@
+import socket
+
+c = socket.socket()
+
+c.connect(('localhost', 9999))
+
+name = input("Client name:")
+c.send(bytes(name, 'utf-8'))
+
+print(c.recv(1024).decode()) \ No newline at end of file
diff --git a/backend/microservice/PythonServer/project/api/socket/server.py b/backend/microservice/PythonServer/project/api/socket/server.py
new file mode 100644
index 00000000..d6ff3f7c
--- /dev/null
+++ b/backend/microservice/PythonServer/project/api/socket/server.py
@@ -0,0 +1,16 @@
+import socket
+
+s = socket.socket()
+print('Socket Created')
+
+s.bind(('localhost', 9999))
+
+s.listen(3)
+print('waiting for connections')
+
+while True:
+ c, addr = s.accept()
+ name = c.recv(1024).decode()
+ print('Connected with ', addr, name)
+ c.send(bytes('Welcome', 'utf-8'))
+ c.close() \ No newline at end of file
diff --git a/backend/microservice/PythonServer/project/api/socket2/client.py b/backend/microservice/PythonServer/project/api/socket2/client.py
new file mode 100644
index 00000000..65e76b55
--- /dev/null
+++ b/backend/microservice/PythonServer/project/api/socket2/client.py
@@ -0,0 +1,16 @@
+# Import socket module
+import socket
+
+# Create a socket object
+s = socket.socket()
+
+# Define the port on which you want to connect
+port = 12345
+
+# connect to the server on local computer
+s.connect(('127.0.0.1', port))
+
+# receive data from the server and decoding to get the string.
+print (s.recv(1024).decode())
+# close the connection
+s.close() \ No newline at end of file
diff --git a/backend/microservice/PythonServer/project/api/socket2/server.py b/backend/microservice/PythonServer/project/api/socket2/server.py
new file mode 100644
index 00000000..c65dae78
--- /dev/null
+++ b/backend/microservice/PythonServer/project/api/socket2/server.py
@@ -0,0 +1,39 @@
+# first of all import the socket library
+import socket
+
+# next create a socket object
+s = socket.socket()
+print ("Socket successfully created")
+
+# reserve a port on your computer in our
+# case it is 12345 but it can be anything
+port = 12345
+
+# Next bind to the port
+# we have not typed any ip in the ip field
+# instead we have inputted an empty string
+# this makes the server listen to requests
+# coming from other computers on the network
+s.bind(('', port))
+print ("socket binded to %s" %(port))
+
+# put the socket into listening mode
+s.listen(5)
+print ("socket is listening")
+
+# a forever loop until we interrupt it or
+# an error occurs
+while True:
+
+# Establish connection with client.
+ c, addr = s.accept()
+ print ('Got connection from', addr )
+
+ # send a thank you message to the client. encoding to send byte type.
+ c.send('Thank you for connecting'.encode())
+
+ # Close the connection with the client
+ c.close()
+
+ # Breaking once connection closed
+ break \ No newline at end of file
diff --git a/backend/microservice/mlservice.py b/backend/microservice/mlservice.py
new file mode 100644
index 00000000..f8e98184
--- /dev/null
+++ b/backend/microservice/mlservice.py
@@ -0,0 +1,335 @@
+from typing_extensions import Self
+import pandas as pd
+import tensorflow as tf
+import keras
+import numpy as np
+
+from copyreg import constructor
+import flask
+from flask import request, jsonify, render_template
+from sklearn.preprocessing import LabelEncoder
+import csv
+import json
+class Response:
+ def __init__(self,history,rezultat,tacnost,preciznost,recall,spec,f1,classificationreport,mse,mae,mape,rmse,cmatrix,fpr,tpr):
+ self.history=history
+ self.rezultat=rezultat
+ self.tacnost=tacnost
+ self.preciznost=preciznost
+ self.recall=recall
+ self.spec=spec
+ self.f1=f1
+ self.classificationreport=classificationreport
+ self.mse=mse
+ self.mae=mae
+ self.mape=mape
+ self.rmse=rmse
+ self.cmatrix=cmatrix
+ self.fpr=fpr
+ self.tpr=tpr
+
+ ### 1)Ucitavanje vrednosti
+def obuka(data,params):
+ import numpy as np
+ import pandas as pd
+ import tensorflow as tf
+ import matplotlib.pyplot as plt
+ #print(1)
+ #data1=pd.read_csv('titanic.csv')
+ #data=data1.copy()
+ #print(data.head())
+
+ ### U promenjivoj kolone nalaze se nazivi svih kolona seta podataka
+ kolone=data.columns
+ #print(kolone[1])
+ #print(data[kolone[1]].isnull().sum())
+ #print(data[kolone[1]].head(10))
+
+
+ ### 2)Proveravanje svih kolona za null vrednosti i popunjavanje medijanom ili srednjom vrednosti ili birisanje
+
+ #####Part2 #####
+ '''
+ brisanje=input("DA LI ZELITE DA IZBRSETE SVE KOLONE SA NULL VREDNOSTIMA? ")
+
+ brisanje=True
+ if(brisanje=='da'):
+ data=data.dropna(axis=1)
+ elif(brisanje=='ne'):
+ brisanjer=input("DA LI ZELITE DA IZBRISETE SVE REDOVE SA NULL VREDNOSTINA ")
+ if(brisanjer=='da'):
+ data=data.dropna()
+ elif(brisanjer=='ne'):
+
+ for i in range(len(kolone)):
+ if(isinstance(data[kolone[i]].dtype, pd.CategoricalDtype)):
+ print('cat')
+
+ if(data[kolone[i]].isnull().any()):
+ tippodataka=data[kolone[i]].dtype
+ kolona=data[kolone[i]].copy()
+
+ if(tippodataka==np.float64 or tippodataka==np.int64):
+ popunjavanje=input("UNETI NACIN POPUNJAVANJA PROMENJIVIH SA NULL VREDNOSTIMA ")
+ if(popunjavanje=='medijana'):
+ medijana=kolona.mean()
+ data[kolone[i]]=data[kolone[i]].fillna(medijana)
+ if(popunjavanje=='srednjavrednost'):
+ sv=data[kolone[i]].sum()/data[kolone[i]].count()
+ data[kolone[i]]=sv
+ if(popunjavanje=='brisanjekolone'):
+ data=data.dropna(axis=1)
+
+ elif(tippodataka==np.object_):
+ najcescavrednost=kolona.value_counts().index[0]
+ data[kolone[i]]=data[kolone[i]].fillna(najcescavrednost)
+
+ '''
+ ### 3)Izbacivanje kolona koje ne uticu na rezultat PART2
+ nredova=data.shape[0]
+ for i in range(len(kolone)):
+ if((data[kolone[i]].nunique()>(nredova/2)) and( data[kolone[i]].dtype==np.object_)):
+ data.pop(kolone[i])
+
+
+ print(data.head(10))
+
+ ### 4)izbor tipa enkodiranja
+ kolone=data.columns ### Azuriranje postojecih kolona nakon moguceg brisanja
+
+ #enc=input("UNETI TIP ENKODIRANJA ")
+ enc=params["encoding"]
+ onehot=0
+
+ ### 5)Enkodiranje svih kategorijskih promenjivih label-encode metodom
+
+ if(enc=='label'):
+ from sklearn.preprocessing import LabelEncoder
+ encoder=LabelEncoder()
+ for k in range(len(kolone)):
+ if(data[kolone[k]].dtype==np.object_):
+ data[kolone[k]]=encoder.fit_transform(data[kolone[k]])
+ print(data.head(20))
+
+ ### 6)Enkodiranje svih kategorijskih promenjivih onehot metodom
+
+ elif(enc=='onehot'):
+ ### PART2###
+ onehot==1
+ kategorijskekolone=[]
+ for k in range(len(kolone)):
+ if(data[kolone[k]].dtype==np.object_):
+
+ kategorijskekolone.append(kolone[k]) ###U kategorijske kolone smestaju se nazivi svih kolona sa kategorijskim podacima
+
+ print(kategorijskekolone)
+
+ ### Enkodiranje
+ data=pd.get_dummies(data,columns=kategorijskekolone,prefix=kategorijskekolone)
+ print(data.head(10))
+
+ kolone=data.columns ### Azuriranje kolona nakon moguceg dodavanja
+
+ ### 7)Podela skupa na skup za trening i skup za testiranje
+
+ #predvidetikol=input("UNETI NAZIV KOLONE ČIJU VREDNOST TREBA PREDVIDETI ")
+ ###sta se cuva od promenjivih broj kolone ili naziv kolone???
+ predvidetikol=params["columnToPredict"]
+
+ xkolone=[]
+ for k in range(len(kolone)):
+ if(kolone[k]!=predvidetikol):
+
+ xkolone.append(kolone[k])###U xkolone se smestaju nazivi kolona cije vrednosti nije potrebno predvideti !!!Prefiks one-hot!!!
+
+ ### 7.1)Podela na x i y
+ ###Dodavanje vrednosti u x
+ x=data[xkolone].values
+ ###Dodavanje vrednosti u y, samo za label enkodiranje, bez prefiksa
+ y=data[predvidetikol].values
+
+ print(data[xkolone].head(10))
+ print(data[predvidetikol].head(10))
+
+ ### 7.2)Unos velicina za trening i test skup
+ #trening=int(input('UNETI VELIČINU TRENING SKUPA '))
+ #test=int(input("UNETI VELICINU TESTNOG SKUPA"))
+ test=params["randomTestSetDistribution"]
+ ###Provera unetih velicina
+ if(test<=0 or test>=100):
+ print("POGREŠAN UNOS VELIČINE SKUPA ZA TRENING")
+ if(test>1):
+ test=test/100
+
+ ### 7.3)Da li korisnik zeli nasumicno rasporedjivanje podataka?
+ #nasumicno=input("DA LI ŽELITE NASUMIČNO RASPOREDJIVANJE PODATAKA U TRENING I TEST SKUP? ")
+ nasumicno=params["randomTestSet"]
+ ###!!!Dugme za nasumici izbor
+ if(nasumicno):
+ random=50
+ else:
+ random=0
+
+ ### 7.4)Podela podataka
+ from sklearn.model_selection import train_test_split
+ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=test,random_state=random)
+
+ ### 8)Skaliranje podataka
+ from sklearn.preprocessing import StandardScaler
+ scaler=StandardScaler()
+ scaler.fit(x_train)
+ x_test=scaler.transform(x_test)
+ x_train=scaler.transform(x_train)
+
+ #####ZAVRSENA PRIPREMA PODATAKA#####
+
+ #####OBUCAVANJE MODELA#####
+
+ ### 9)Inicijalizacija vestacke neuronske mreze
+
+ classifier=tf.keras.Sequential()
+
+ ### 10)Dodavanje prvog,ulaznog sloja
+ #aktivacijau=input("UNETI ŽELJENU AKTIVACIONU FUNKCIJU ULAZNOG SLOJA ")
+ #brojnu=int(input("UNETI BROJ NEURONA ULAZNOG SLOJA "))
+
+ aktivacijau=params["inputLayerActivationFunction"]
+ brojnu=params["inputNeurons"]
+
+ classifier.add(tf.keras.layers.Dense(units=brojnu,activation=aktivacijau,input_dim=x_train.shape[1]))
+
+ ### 11)Dodavanje drugog, skrivenog sloja
+ #aktivacijas=input("UNETI ŽELJENU AKTIVACIONU FUNKCIJU SKRIVENOG SLOJA ")
+ #brojns=int(input("UNETI BROJ NEURONA SKRIVENOG SLOJA "))
+
+ aktivacijas=params["hiddenLayerActivationFunction"]
+ brojns=params["hiddenLayerNeurons"]
+
+ classifier.add(tf.keras.layers.Dense(units=brojns,activation=aktivacijas))
+
+ ### 12) Dodavanje treceg, izlaznog sloja
+ #aktivacijai=input("UNETI ŽELJENU AKTIVACIONU FUNKCIJU IZLAZNOG SLOJA ")
+
+ aktivacijai=params["outputLayerActivationFunction"]
+
+ classifier.add(tf.keras.layers.Dense(units=1,activation=aktivacijai))
+
+
+ ### 13) Kompajliranje neuronske mreze
+ #gubici=input("UNETI FUNKCIJU OBRADE GUBITAKA ")
+ #optimizator=input("UNETI ŽELJENI OPTIMIZATOR ")
+
+ optimizator=params["optimizer"]
+
+ ### 13.1)Izbor metrike za kompajler PART2
+ metrike=[]
+ while(1):
+ m=params['lossFunction']
+
+ if(m=='KRAJ'):
+ break
+ metrike.append(m)
+ classifier.compile(optimizer=optimizator, loss='binary_crossentropy',metrics = metrike)
+
+ ### 14)
+ #uzorci=int(input("UNETI KOLIKO UZORAKA ĆE BITI UNETO U ISTO VREME "))
+ #epohe=int(input("UNETI BROJ EPOHA"))
+ uzorci=params["batchSize"]
+ epohe=params["epochs"]
+ history=classifier.fit(x_train,y_train,batch_size=uzorci,epochs=epohe)
+
+ ### 14.1)Parametri grafika iz history PART2
+ metrikedf=pd.DataFrame() ###DataFrame u kom se nalaze podaci o rezultatima metrika za iscrtavanje na grafiku. Svaka kolona sadrzi vrednost metrike po epohama
+ for i in range(len(metrike)):
+ metrikedf[metrike[i]]=history.history[metrike[i]]
+ #print(history.history[metrike[i]])
+ plt.plot(history.history[metrike[i]])
+ plt.show()
+
+ #print(metrikedf)
+
+ #metrikedf.to_csv("metrike.csv")
+
+
+ ### 15) Predvidjanje
+ y_pred=classifier.predict(x_test)
+
+ print(y_pred)
+
+ ### 15.1) Formatiranje podataka za metrike PART2
+ y_pred=(y_pred>=0.5).astype('int')
+ y_pred=y_pred.flatten()
+
+ #print(y_pred)
+
+ #print(y_test)
+ ### 15.2) Kreiranje DataFrame-a u kom se nalaze kolone koje predstavljaju stvarne i predvidjene vrednosti, potrebne za iscrtavanje grafika i metrike PART2
+ rezultat=pd.DataFrame({"Stvarna vrednost ":y_test,"Predvidjena vrednost":y_pred})
+ #print(rezultat.head(20))
+
+ #####METRIKE##### PART2
+
+ import sklearn.metrics as sm
+
+
+ ### 16)Tacnost
+ tacnost=sm.accuracy_score(y_test,y_pred)
+ print('tacnost ',tacnost)
+
+ ### 17)Preciznost
+ preciznost=sm.precision_score(y_test,y_pred)
+ print('preciznost ',preciznost)
+
+ ### 18)Recall
+ recall=sm.recall_score(y_test,y_pred)
+ print('recall ',recall)
+
+ ### 19)Specificity
+ tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
+ spec = tn / (tn+fp)
+ print('spec ',spec)
+
+ ### 20)F1
+ f1=sm.f1_score(y_test,y_pred)
+ print('f1 ',f1)
+
+ ### 21)Classification report
+ classificationreport=sm.classification_report(y_test,y_pred)
+ print('classification ',classificationreport)
+
+ ### 22)Mean squared error (mse)
+ mse=sm.mean_squared_error(y_test,y_pred)
+ print('mse ',mse)
+
+ ### 23)Mean absolute error (mae)
+ mae=sm.mean_absolute_error(y_test,y_pred)
+ print('mae ',mae)
+
+ ### 24)Mean absolute percentage error (mape)
+ mape=sm.mean_absolute_percentage_error(y_test,y_pred)
+ print('mape ',mape)
+
+ ### 25)Root mean square error (rmse) *** da bi se iskoristila u history, salje se u metrics preko funkcije
+ import numpy as np
+ rmse=np.sqrt(sm.mean_squared_error(y_test,y_pred))
+ print("rmse ",rmse)
+
+ ### 26)Confusion matrix
+ cmatrix=sm.confusion_matrix(y_test,y_pred)
+ print('cmatrix ',cmatrix)
+
+ ### 27)ROC
+ fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
+ plt.plot(fpr, tpr, color='blue')
+ plt.title('ROC')
+ plt.xlim([0.0, 1.0])
+ plt.xlabel('False Positive Rate')
+ plt.ylim([0.0, 1.0])
+ plt.ylabel('True Positive Rate')
+ plt.show()
+
+ r=Response(history,rezultat,tacnost,preciznost,recall,spec,f1,classificationreport,mse,mae,mape,rmse,cmatrix,fpr,tpr)
+
+ return "Done"
+
+
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index 43342fb0..c0bc339d 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -4,7 +4,7 @@ export default class Model {
public description: string = '',
public dateCreated: Date = new Date(),
public lastUpdated: Date = new Date(),
- public datasetId?: number,
+ public datasetId: string = '',
// Test set settings
public inputColumns: string[] = [],
diff --git a/frontend/src/app/_elements/dataset-load/dataset-load.component.html b/frontend/src/app/_elements/dataset-load/dataset-load.component.html
index 2a611a96..fcec6ec3 100644
--- a/frontend/src/app/_elements/dataset-load/dataset-load.component.html
+++ b/frontend/src/app/_elements/dataset-load/dataset-load.component.html
@@ -1,57 +1,61 @@
<div>
- <div class="mb-4">
- <label for="name" class="col-form-label">Naziv dataseta:</label>
- <input type="text" class="form-control" name="name" placeholder="Naziv..."
- [(ngModel)]="dataset.name">
+ <div class="row mb-4">
+ <div class="col-2">
+ </div>
+ <div class="col-3">
+ <label for="name" class="col-form-label">Naziv dataseta:</label>
+ <input type="text" class="form-control mb-3" name="name" placeholder="Naziv..."
+ [(ngModel)]="dataset.name">
+ <label for="desc" class="col-sm-2 col-form-label">Opis:</label>
+ <div>
+ <textarea class="form-control" name="desc" rows="3" [(ngModel)]="dataset.description"></textarea>
+ </div>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-4 mt-4">
+ <input list=delimiterOptions
+ placeholder="Izaberite ili ukucajte delimiter za .csv fajl" class="form-control mt-2" [(ngModel)]="delimiter"
+ (input)="update()">
+ <datalist id=delimiterOptions>
+ <option *ngFor="let option of delimiterOptions">{{option}}</option>
+ </datalist>
+
+ <label for="type" class="form-check-label my-5">Da li .csv ima header?
+ <input class="mx-3 form-check-input" type="checkbox" (input)="update()" [(ngModel)]="hasHeader" type="checkbox" value="" id="checkboxHeader" checked>
+ </label>
+ <br>
+ <input id="fileInput" class="form-control" type="file" class="upload" (change)="changeListener($event)" accept=".csv">
+ </div>
</div>
- <label for="desc" class="col-sm-2 col-form-label">Opis:</label>
- <div>
- <textarea class="form-control" name="desc" rows="3" [(ngModel)]="dataset.description"></textarea>
- </div>
-
-
- <div class="d-flex justify-content-center">
- <input style="display: inline-block; width:350px;" list=delimiterOptions
- placeholder="Izaberite ili ukucajte delimiter za .csv fajl" class="form-control" [(ngModel)]="delimiter"
- (input)="update()">
- <datalist id=delimiterOptions>
- <option *ngFor="let option of delimiterOptions">{{option}}</option>
- </datalist> &nbsp;&nbsp;&nbsp;&nbsp;
-
- <label for="type" class="form-check-label">Da li .csv ima header?
- <input class="mx-3 form-check-input" type="checkbox" (input)="update()" [(ngModel)]="hasHeader" type="checkbox" value="" id="checkboxHeader" checked>
- </label> &nbsp;&nbsp;&nbsp;&nbsp;
- <input id="fileInput" class="form-control" type="file" class="upload" (change)="changeListener($event)" accept=".csv">
+ <div class="table-responsive">
+ <table *ngIf="csvRecords.length > 0 && hasHeader" class="table table-bordered table-light mt-4">
+ <thead>
+ <tr>
+ <th *ngFor="let item of csvRecords[0]; let i = index">{{item}}</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr *ngFor="let row of csvRecords | slice:1:11">
+ <td *ngFor="let col of row">{{col}}</td>
+ </tr>
+ </tbody>
+ </table>
+
+ <table *ngIf="csvRecords.length > 0 && !hasHeader" class="table table-bordered table-light mt-4">
+ <tbody>
+ <tr *ngFor="let row of csvRecords | slice:0:10">
+ <td *ngFor="let col of row">{{col}}</td>
+ </tr>
+ </tbody>
+ </table>
</div>
-
- <table *ngIf="csvRecords.length > 0 && hasHeader" class="table table-bordered table-light my-4">
- <thead>
- <tr>
- <th *ngFor="let item of csvRecords[0]; let i = index">{{item}}</th>
- </tr>
- </thead>
- <tbody>
- <tr *ngFor="let row of csvRecords | slice:1:11">
- <td *ngFor="let col of row">{{col}}</td>
- </tr>
- </tbody>
- </table>
-
- <table *ngIf="csvRecords.length > 0 && !hasHeader" class="table table-bordered table-light mt-4">
- <tbody>
- <tr *ngFor="let row of csvRecords | slice:0:10">
- <td *ngFor="let col of row">{{col}}</td>
- </tr>
- </tbody>
- </table>
<div *ngIf="csvRecords.length > 0" id="info">
. . . <br>
{{rowsNumber}} x {{colsNumber}}
</div>
-
-
</div> \ No newline at end of file
diff --git a/frontend/src/app/_pages/add-model/add-model.component.css b/frontend/src/app/_pages/add-model/add-model.component.css
index 5184733d..4bf569cc 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.css
+++ b/frontend/src/app/_pages/add-model/add-model.component.css
@@ -1,6 +1,6 @@
#header {
background-color: #003459;
- padding-top: 25px;
+ padding-top: 30px;
padding-bottom: 20px;
}
#header h1 {
@@ -11,4 +11,8 @@
#container {
border-radius: 8px;
+}
+
+#wrapper {
+ color: #003459;
} \ No newline at end of file
diff --git a/frontend/src/app/_pages/add-model/add-model.component.html b/frontend/src/app/_pages/add-model/add-model.component.html
index f5270127..004f308b 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.html
+++ b/frontend/src/app/_pages/add-model/add-model.component.html
@@ -6,38 +6,36 @@
<div id="container" class="container p-5" style="background-color: white; min-height: 100%;">
- <div class="form-group row mb-4 d-flex"> <!--justify-content-center-->
- <h2 class="col-sm-2" style="color: #00171f"> Nov model: </h2>
- <div class="col-sm-3">
- <div class="mb-4">
+ <div class="form-group row mb-4 d-flex justify-content-center"> <!--justify-content-center-->
+ <h2 class="col-2"> Nov model: </h2>
+ <div class="col-3">
<label for="name" class="col-form-label">Naziv modela:</label>
<input type="text" class="form-control" name="name" placeholder="Naziv..."
[(ngModel)]="newModel.name">
- </div>
- <div class="d-inline-flex align-items-center">
- <label for="dateCreated" class="col-form-label">Datum:</label> &nbsp;&nbsp;
- <input type="text" class="form-control-plaintext" id="dateCreated" placeholder="--/--/--"
- value="{{newModel.dateCreated | date: 'dd/MM/yyyy'}}" readonly>
- </div>
</div>
- <div class="col-sm-5">
+ <div class="col-5">
<label for="desc" class="col-sm-2 col-form-label">Opis:</label>
<div>
<textarea class="form-control" name="desc" rows="3" [(ngModel)]="newModel.description"></textarea>
</div>
</div>
+ <div class="col-2">
+ <label for="dateCreated" class="col-form-label">Datum:</label> &nbsp;&nbsp;
+ <input type="text" class="form-control-plaintext" id="dateCreated" placeholder="--/--/--"
+ value="{{newModel.dateCreated | date: 'dd/MM/yyyy'}}" readonly>
+ </div>
</div>
- <div class="my-5 justify-content-center">
+ <div class="mt-5 justify-content-center">
<h2>Izvor podataka:</h2>
<app-dataset-load id="dataset" (loaded)="datasetLoaded = true"></app-dataset-load>
</div>
- <div *ngIf="datasetLoaded" class="mt-2">
+ <div *ngIf="datasetLoaded">
<div *ngIf="datasetLoadComponent" class="row">
<div class="col d-flex justify-content-center">
<h3>Izaberite ulazne kolone:</h3>
- <div id="divInputs" class="form-check">
+ <div id="divInputs" class="form-check mt-2">
<br>
<div *ngFor="let item of datasetLoadComponent.dataset.header; let i = index">
<input *ngIf="i == 0" class="form-check-input" type="checkbox" value="{{item}}" id="cb_{{item}}" name="cbs" checked>
@@ -50,7 +48,7 @@
</div>
<div class="col d-flex justify-content-left">
<h3>Izaberite izlaznu kolonu:</h3>
- <div id="divOutputs" class="form-check">
+ <div id="divOutputs" class="form-check mt-2">
<br>
<div *ngFor="let item of datasetLoadComponent.dataset.header; let i = index">
<input *ngIf="i == 0" class="form-check-input" type="radio" value="{{item}}" id="rb_{{item}}" name="rbs" checked>
@@ -62,50 +60,117 @@
</div>
</div>
</div>
- </div>
+ </div>
+
- <h2>Parametri treniranja:</h2>
+
+ <h2 class="mt-5 mb-4">Parametri treniranja:</h2>
- <div class="row">
- <div class="col-2 mt-4">
- <label for="type" class="col-form-label">Tip mreže: </label>
- <select id=typeOptions class="form-control" name="type" [(ngModel)]="newModel.type">
- <option *ngFor="let option of Object.keys(ANNType); let optionName of Object.values(ANNType)"
- [value]="option">
- {{ optionName }}
- </option>
- </select>
+ <div>
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="type" class="col-form-label">Tip mreže: </label>
+ </div>
+ <div class="col-2">
+ <select id=typeOptions class="form-control" name="type" [(ngModel)]="newModel.type">
+ <option *ngFor="let option of Object.keys(ANNType); let optionName of Object.values(ANNType)"
+ [value]="option">
+ {{ optionName }}
+ </option>
+ </select>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="hiddenLayers" class="col-form-label">Broj skrivenih slojeva: </label>
+ </div>
+ <div class="col-1">
+ <input type="number" min="1" class="form-control" name="hiddenLayers" [(ngModel)]="newModel.hiddenLayers">
+ </div>
</div>
- <div class="col-1 mt-4">
- <label for="encoding" class="col-form-label">Enkoding: </label>
- <select id=encodingOptions class="form-control" name="encoding" [(ngModel)]="newModel.encoding">
- <option *ngFor="let option of Object.keys(Encoding); let optionName of Object.values(Encoding)"
- [value]="option">
- {{ optionName }}
- </option>
- </select>
+
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="encoding" class="col-form-label">Enkoding: </label>
+ </div>
+ <div class="col-2">
+ <select id=encodingOptions class="form-control" name="encoding" [(ngModel)]="newModel.encoding">
+ <option *ngFor="let option of Object.keys(Encoding); let optionName of Object.values(Encoding)"
+ [value]="option">
+ {{ optionName }}
+ </option>
+ </select>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="hiddenLayerNeurons" class="col-form-label">Broj neurona skrivenih slojeva: </label>
+ </div>
+ <div class="col-1">
+ <input type="number" min="1" class="form-control" name="hiddenLayerNeurons" [(ngModel)]="newModel.hiddenLayerNeurons">
+ </div>
</div>
- <div class="col-1 mt-4">
- <label for="optimizer" class="col-form-label">Optimizacija: </label>
- <select id=optimizerOptions class="form-control" name="optimizer" [(ngModel)]="newModel.optimizer">
- <option *ngFor="let option of Object.keys(Optimizer); let optionName of Object.values(Optimizer)"
- [value]="option">
- {{ optionName }}
- </option>
- </select>
+
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="optimizer" class="col-form-label">Optimizacija: </label>
+ </div>
+ <div class="col-2">
+ <select id=optimizerOptions class="form-control" name="optimizer" [(ngModel)]="newModel.optimizer">
+ <option *ngFor="let option of Object.keys(Optimizer); let optionName of Object.values(Optimizer)"
+ [value]="option">
+ {{ optionName }}
+ </option>
+ </select>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="batchSize" class="col-form-label">Broj uzorka po iteraciji: </label>
+ </div>
+ <div class="col-1">
+ <input type="number" min="1" class="form-control" name="batchSize" [(ngModel)]="newModel.batchSize">
+ </div>
</div>
- <div class="col mt-4">
- <label for="lossFunction" class="col-form-label">Funkcija obrade gubitka: </label>
- <select id=lossFunctionOptions class="form-control" name="lossFunction" [(ngModel)]="newModel.lossFunction">
- <option *ngFor="let option of Object.keys(LossFunction); let optionName of Object.values(LossFunction)"
- [value]="option">
- {{ optionName }}
- </option>
- </select>
+
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="lossFunction" class="col-form-label">Funkcija obrade gubitka: </label>
+ </div>
+ <div class="col-2">
+ <select id=lossFunctionOptions class="form-control" name="lossFunction" [(ngModel)]="newModel.lossFunction">
+ <option *ngFor="let option of Object.keys(LossFunction); let optionName of Object.values(LossFunction)"
+ [value]="option">
+ {{ optionName }}
+ </option>
+ </select>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-3 mt-2">
+ <label for="type" class="form-check-label">Nasumičan redosled podataka?</label>
+ <input class="mx-3 form-check-input" type="checkbox" [(ngModel)]="newModel.randomOrder" type="checkbox" value="" checked>
+ </div>
+ <div class="col-1">
+ </div>
</div>
- <div class="col-2">
- <label for="inputLayerActivationFunction" class="col-form-label">Funkcija aktivacije<br>ulaznog sloja:</label>
- <select id=inputLayerActivationFunctionOptions class="form-control" name="inputLayerActivationFunction"
+
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="inputLayerActivationFunction" class="col-form-label">Funkcija aktivacije ulaznog sloja:</label>
+ </div>
+ <div class="col-2">
+ <select id=inputLayerActivationFunctionOptions class="form-control" name="inputLayerActivationFunction"
[(ngModel)]="newModel.inputLayerActivationFunction">
<option
*ngFor="let option of Object.keys(ActivationFunction); let optionName of Object.values(ActivationFunction)"
@@ -113,65 +178,80 @@
{{ optionName }}
</option>
</select>
+ </div>
+ <div class="col-1">
+ </div>
+ <div class="col-5">
+ <label for="type" class="form-check-label">Podela test skupa:&nbsp;&nbsp;
+ <input class="form-check-input" type="checkbox" [checked]="newModel.randomTestSet"
+ (change)="newModel.randomTestSet = !newModel.randomTestSet">
+ </label> &nbsp;&nbsp;&nbsp;&nbsp;
+ test
+ <mat-slider min="0.1" max="0.9" step="0.1" value="0.2" name="randomTestSetDistribution" thumbLabel
+ [disabled]="!newModel.randomTestSet" [(ngModel)]="newModel.randomTestSetDistribution">
+ </mat-slider>
+ trening
+ </div>
+ <div class="col">
+ </div>
</div>
- <div class="col">
- <label for="hiddenLayerActivationFunction" class="col-form-label">Funkcija aktivacije<br>skrivenih slojeva:</label>
- <select id=hiddenLayerActivationFunctionOptions class="form-control" name="hiddenLayerActivationFunction"
+
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="hiddenLayerActivationFunction" class="col-form-label">Funkcija aktivacije skrivenih slojeva:</label>
+ </div>
+ <div class="col-2">
+ <select id=hiddenLayerActivationFunctionOptions class="form-control" name="hiddenLayerActivationFunction"
[(ngModel)]="newModel.hiddenLayerActivationFunction">
<option
*ngFor="let option of Object.keys(ActivationFunction); let optionName of Object.values(ActivationFunction)"
[value]="option">
{{ optionName }}
- </option>
- </select>
- </div>
- <div class="col">
- <label for="outputLayerActivationFunction" class="col-form-label">Funkcija aktivacije<br>izlaznog sloja:</label>
- <select id=outputLayerActivationFunctionOptions class="form-control" name="outputLayerActivationFunction"
- [(ngModel)]="newModel.outputLayerActivationFunction">
- <option
- *ngFor="let option of Object.keys(ActivationFunction); let optionName of Object.values(ActivationFunction)"
- [value]="option">
- {{ optionName }}
</option>
- </select>
+ </select>
+ </div>
+ <div class="col">
+ </div>
+ <div class="col">
+ </div>
</div>
- </div>
- <div class="row mt-5">
- <div class="col-2">
- <label for="inputNeurons" class="col-form-label">Broj ulaznih neurona: </label> <!--UMESTO OVOGA IDE NASUMICAN REDOSLED? YES/NO-->
- <input type="number" min="1" class="form-control" name="inputNeurons" [(ngModel)]="newModel.inputNeurons">
- </div>
- <div class="col-2">
- <label for="hiddenLayers" class="col-form-label">Broj skrivenih slojeva: </label>
- <input type="number" min="1" class="form-control" name="hiddenLayers" [(ngModel)]="newModel.hiddenLayers">
- </div>
- <div class="col-3 ">
- <label for="hiddenLayerNeurons" class="col-form-label">Broj neurona skrivenih slojeva: </label>
- <input type="number" min="1" class="form-control" name="hiddenLayerNeurons" [(ngModel)]="newModel.hiddenLayerNeurons">
- </div>
- <div class="col-2">
- <label for="batchSize" class="col-form-label">Broj uzorka po iteraciji: </label>
- <input type="number" min="1" class="form-control" name="batchSize" [(ngModel)]="newModel.batchSize">
- </div>
- <div class="col-3 mt-1">
- <label for="type" class="form-check-label mb-3">&nbsp;&nbsp;Podela test skupa:
- <input class="mx-3 form-check-input" type="checkbox" [checked]="newModel.randomTestSet"
- (change)="newModel.randomTestSet = !newModel.randomTestSet">
- </label>
- <mat-slider min="0.1" max="0.9" step="0.1" value="0.2" name="randomTestSetDistribution" thumbLabel
- [disabled]="!newModel.randomTestSet" [(ngModel)]="newModel.randomTestSetDistribution">
- </mat-slider>
+ <div class="row p-2">
+ <div class="col-1">
+ </div>
+ <div class="col-3">
+ <label for="outputLayerActivationFunction" class="col-form-label">Funkcija aktivacije izlaznog sloja:</label>
+ </div>
+ <div class="col-2">
+ <select id=outputLayerActivationFunctionOptions class="form-control" name="outputLayerActivationFunction"
+ [(ngModel)]="newModel.outputLayerActivationFunction">
+ <option
+ *ngFor="let option of Object.keys(ActivationFunction); let optionName of Object.values(ActivationFunction)"
+ [value]="option">
+ {{ optionName }}
+ </option>
+ </select>
+ </div>
+ <div class="col">
+ </div>
+ <div class="col">
+ </div>
</div>
</div>
+
<br><br>
- <div class="form-group row mt-5">
- <div class="col-4"></div>
- <button class="btn btn-lg col-4" style="background-color:#003459; color:white;" (click)="addModel();">Napravi model</button>
- <div class="col-4"></div>
+ <div class="form-group row mt-5 mb-3">
+ <div class="col"></div>
+ <button class="btn btn-lg col-4" style="background-color:#003459; color:white;" (click)="addModel();">Sačuvaj model</button>
+ <div class="col"></div>
+ <button class="btn btn-lg col-4" style="background-color:#003459; color:white;" (click)="trainModel();">Treniraj model</button>
+ <div class="col"></div>
</div>
</div>
</div>
+
+
diff --git a/frontend/src/app/_pages/add-model/add-model.component.ts b/frontend/src/app/_pages/add-model/add-model.component.ts
index c18ad324..01e8ade9 100644
--- a/frontend/src/app/_pages/add-model/add-model.component.ts
+++ b/frontend/src/app/_pages/add-model/add-model.component.ts
@@ -1,4 +1,5 @@
import { Component, OnInit, ViewChild } from '@angular/core';
+import { Observable, of } from 'rxjs';
import Model from 'src/app/_data/Model';
import { ANNType, Encoding, ActivationFunction, LossFunction, Optimizer } from 'src/app/_data/Model';
import { DatasetLoadComponent } from 'src/app/_elements/dataset-load/dataset-load.component';
@@ -32,14 +33,24 @@ export class AddModelComponent implements OnInit {
}
addModel() {
+ this.saveModel(false); //trajno cuvanje
+ }
+ trainModel() {
+ this.saveModel(true).subscribe((modelId : any) => {
+ if (modelId)
+ this.models.trainModel(modelId);
+ }); //privremeno cuvanje modela => vraca id sacuvanog modela koji cemo da treniramo sad
+ }
+ saveModel(temporary: boolean) : any {
if (this.datasetLoadComponent)
- this.models.addDataset(this.datasetLoadComponent?.dataset);
+ this.models.addDataset(this.datasetLoadComponent?.dataset).subscribe((response) => {//id dataseta je response
+ this.newModel.datasetId = response;
- this.getCheckedInputCols();
- this.getCheckedOutputCol();
- if (this.validationInputsOutput())
- this.models.addModel(this.newModel).subscribe((response) => {
- console.log(response);
+ this.getCheckedInputCols();
+ this.getCheckedOutputCol();
+ if (this.validationInputsOutput())
+ return this.models.addModel(this.newModel); //id modela
+ return of(null);
});
}
diff --git a/frontend/src/app/_services/models.service.ts b/frontend/src/app/_services/models.service.ts
index f85ca44e..80dc1ae3 100644
--- a/frontend/src/app/_services/models.service.ts
+++ b/frontend/src/app/_services/models.service.ts
@@ -14,9 +14,12 @@ export class ModelsService {
constructor(private http: HttpClient, private authService: AuthService) { }
addModel(model: Model) {
- return this.http.post(`${API_SETTINGS.apiURL}/model/sendModel`, model, { headers: this.authService.authHeader(), responseType: 'text' });
+ return this.http.post(`${API_SETTINGS.apiURL}/model/add`, model, { headers: this.authService.authHeader(), responseType: 'text' });
}
addDataset(dataset: Dataset) {
- return this.http.post(`${API_SETTINGS.apiURL}/model/uploadDataset`, dataset, { headers: this.authService.authHeader(), responseType: 'text' });
+ return this.http.post(`${API_SETTINGS.apiURL}/dataset/add`, dataset, { headers: this.authService.authHeader(), responseType: 'text' });
+ }
+ trainModel(modelId: string) {
+ return this.http.post(`${API_SETTINGS.apiURL}/model/train`, modelId, { headers: this.authService.authHeader(), responseType: 'text' });
}
}