aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIvan Ljubisavljevic <ivan996sk@gmail.com>2022-05-05 01:34:52 +0200
committerIvan Ljubisavljevic <ivan996sk@gmail.com>2022-05-05 01:34:52 +0200
commitbdabccc6e8f4d35085a4defe61c579ea0002f798 (patch)
tree3affc7cba96164a752ab82b284638eeca50a72a8
parentbd13fc85e30778e0ce84ca3f066196c3e08a2e13 (diff)
parent90dfdda35ce378808b3567b0addee603112ef756 (diff)
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into redesign
-rw-r--r--backend/microservice/api/newmlservice.py40
-rw-r--r--frontend/src/app/_elements/_charts/line-chart/line-chart.component.ts48
-rw-r--r--frontend/src/app/_elements/folder/folder.component.ts5
-rw-r--r--frontend/src/app/_elements/graph/graph.component.ts2
-rw-r--r--frontend/src/app/_elements/metric-view/metric-view.component.ts2
-rw-r--r--frontend/src/app/_elements/notifications/notifications.component.ts4
-rw-r--r--frontend/src/app/_elements/playlist/playlist.component.ts2
-rw-r--r--frontend/src/app/_pages/experiment/experiment.component.ts3
8 files changed, 51 insertions, 55 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index d84d9567..2f08d4b4 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -130,7 +130,7 @@ def returnColumnsInfo(dataset):
#print(NullRows)
#print(len(NullRows))
allNullRows=len(NullRows)
- print(cMatrix.to_json(orient='index'))
+ #print(cMatrix.to_json(orient='index'))
#json.loads()['data']
return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':json.loads(cMatrix.to_json(orient='split'))['data']}
@@ -180,17 +180,20 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
kategorijskekolone=[]
###PRETVARANJE NUMERICKIH U KATREGORIJSKE AKO JE KORISNIK TAKO OZNACIO
columnInfo=paramsDataset['columnInfo']
- for col in columnInfo:
- if(col['columnType']=="Kategorijski"):
+ columnTypes=paramsExperiment['columnTypes']
+ for i in range(len(columnInfo)):
+ col=columnInfo[i]
+ if(columnTypes[i]=="categorical" and col['columnName'] in paramsExperiment['inputColumns']):
data[col['columnName']]=data[col['columnName']].apply(str)
- kategorijskekolone.append(col['coumnName'])
-
+ kategorijskekolone.append(col['columnName'])
+ #kategorijskekolone=data.select_dtypes(include=['object']).columns
+ print(kategorijskekolone)
###NULL
null_value_options = paramsExperiment["nullValues"]
null_values_replacers = paramsExperiment["nullValuesReplacers"]
if(null_value_options=='replace'):
- #print("replace null") #
+ #print("replace null")
dict=null_values_replacers
while(len(dict)>0):
replace=dict.pop()
@@ -362,9 +365,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
#plt.plot(hist['accuracy'])
@@ -416,16 +419,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
-
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(x_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(y_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
-
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -470,11 +466,11 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
- classifier.add(tf.keras.layers.Dense(units=1),activation=paramsModel['outputLayerActivationFunction'])
+ classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))
@@ -642,9 +638,9 @@ def manageH5(dataset,params,h5model):
h5model.summary()
#ann_viz(h5model, title="My neural network")
- h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
+ h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics = ['accuracy','mae','mse'])
- history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize'])
+ history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=int(params['batchSize']))
y_pred2=h5model.predict(x2)
diff --git a/frontend/src/app/_elements/_charts/line-chart/line-chart.component.ts b/frontend/src/app/_elements/_charts/line-chart/line-chart.component.ts
index 34df38bc..655db9ec 100644
--- a/frontend/src/app/_elements/_charts/line-chart/line-chart.component.ts
+++ b/frontend/src/app/_elements/_charts/line-chart/line-chart.component.ts
@@ -9,12 +9,12 @@ import { Chart } from 'chart.js';
export class LineChartComponent implements AfterViewInit {
- dataAcc: number[] = [2,3,5,5,6,7,8,8,4,6,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97];
- dataMAE: number[] = [2,3,5,5,6,7,8,8,4,6,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97];
- dataMSE: number[] = [2,3,5,5,6,7,8,8,4,6,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97];
- dataLOSS: number[] =[2,3,5,5,6,7,8,8,4,6,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97];
+ dataAcc: number[] = [];
+ dataMAE: number[] = [];
+ dataMSE: number[] = [];
+ dataLOSS: number[] = [];
- dataEpoch: number[] = [2,3,5,5,6,7,8,8,4,6,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97];
+ dataEpoch: number[] = [];
constructor() {
/*let i = 0;
@@ -77,28 +77,28 @@ export class LineChartComponent implements AfterViewInit {
},
options: {
scales: {
- x:{
- ticks: {
- color: 'white'
- },
- grid: {
- color: "rgba(0, 99, 171, 0.5)"
- }
+ x: {
+ ticks: {
+ color: 'white'
},
- y: {
- beginAtZero: true,
- ticks: {
- color: 'white'
- },
- grid: {
- color: "rgba(0, 99, 171, 0.5)"
- }
+ grid: {
+ color: "rgba(0, 99, 171, 0.5)"
}
-
+ },
+ y: {
+ beginAtZero: true,
+ ticks: {
+ color: 'white'
+ },
+ grid: {
+ color: "rgba(0, 99, 171, 0.5)"
+ }
+ }
+
}
-
-
- }
+
+
+ }
}
);
}
diff --git a/frontend/src/app/_elements/folder/folder.component.ts b/frontend/src/app/_elements/folder/folder.component.ts
index b3c70d1d..fabb524c 100644
--- a/frontend/src/app/_elements/folder/folder.component.ts
+++ b/frontend/src/app/_elements/folder/folder.component.ts
@@ -238,15 +238,12 @@ export class FolderComponent implements AfterViewInit {
deleteFile(file: FolderFile, event: Event) {
event.stopPropagation();
- console.log('delete');
+ //console.log('delete');
switch (this.type) {
case FolderType.Dataset:
this.datasetsService.deleteDataset(<Dataset>file).subscribe((response) => {
- console.log(this.files, this.filteredFiles)
this.filteredFiles.splice(this.filteredFiles.indexOf(file), 1);
- console.log(this.files, this.filteredFiles)
this.refreshFiles(null);
- console.log(this.files, this.filteredFiles)
});
break;
case FolderType.Model:
diff --git a/frontend/src/app/_elements/graph/graph.component.ts b/frontend/src/app/_elements/graph/graph.component.ts
index 73c3b1ab..da2c7767 100644
--- a/frontend/src/app/_elements/graph/graph.component.ts
+++ b/frontend/src/app/_elements/graph/graph.component.ts
@@ -43,7 +43,7 @@ export class GraphComponent implements AfterViewInit {
window.addEventListener('resize', () => { this.resize() });
this.update();
this.resize();
- console.log(this.layers);
+ //console.log(this.layers);
}
layers: Node[][] = [];
diff --git a/frontend/src/app/_elements/metric-view/metric-view.component.ts b/frontend/src/app/_elements/metric-view/metric-view.component.ts
index 3840692a..6fd2f320 100644
--- a/frontend/src/app/_elements/metric-view/metric-view.component.ts
+++ b/frontend/src/app/_elements/metric-view/metric-view.component.ts
@@ -28,7 +28,7 @@ export class MetricViewComponent implements OnInit {
myEpochs.push(epoch + 1);
for (let key in metrics) {
let value = metrics[key];
- console.log(key, ':::', value, epoch);
+ //console.log(key, ':::', value, epoch);
if (key === 'accuracy') {
myAcc.push(parseFloat(value));
}
diff --git a/frontend/src/app/_elements/notifications/notifications.component.ts b/frontend/src/app/_elements/notifications/notifications.component.ts
index d64530b9..5716c1e6 100644
--- a/frontend/src/app/_elements/notifications/notifications.component.ts
+++ b/frontend/src/app/_elements/notifications/notifications.component.ts
@@ -24,8 +24,8 @@ export class NotificationsComponent implements OnInit {
this.signalRService.hubConnection.on("NotifyEpoch", (mName: string, mId: string, stat: string, totalEpochs: number, currentEpoch: number) => {
const existingNotification = this.notifications.find(x => x.id === mId)
const progress = ((currentEpoch + 1) / totalEpochs);
- console.log("Ukupno epoha", totalEpochs, "Trenutna epoha:", currentEpoch);
- console.log("stat:", stat);
+ //console.log("Ukupno epoha", totalEpochs, "Trenutna epoha:", currentEpoch);
+ //console.log("stat:", stat);
if (!existingNotification)
this.notifications.push(new Notification(`Treniranje modela: ${mName}`, mId, progress, true));
else {
diff --git a/frontend/src/app/_elements/playlist/playlist.component.ts b/frontend/src/app/_elements/playlist/playlist.component.ts
index 7529b36b..7f476178 100644
--- a/frontend/src/app/_elements/playlist/playlist.component.ts
+++ b/frontend/src/app/_elements/playlist/playlist.component.ts
@@ -44,6 +44,6 @@ export class PlaylistComponent implements OnInit {
}
});
- console.log(this.tableDatas);
+ //console.log(this.tableDatas);
}
}
diff --git a/frontend/src/app/_pages/experiment/experiment.component.ts b/frontend/src/app/_pages/experiment/experiment.component.ts
index c4d6063c..1dc18a78 100644
--- a/frontend/src/app/_pages/experiment/experiment.component.ts
+++ b/frontend/src/app/_pages/experiment/experiment.component.ts
@@ -75,6 +75,9 @@ export class ExperimentComponent implements AfterViewInit {
if (this.signalRService.hubConnection) {
this.signalRService.hubConnection.on("NotifyEpoch", (mName: string, mId: string, stat: string, totalEpochs: number, currentEpoch: number) => {
console.log(this.modelToTrain?._id, mId);
+ if (currentEpoch == 0) {
+ this.history = [];
+ }
if (this.modelToTrain?._id == mId) {
stat = stat.replace(/'/g, '"');
//console.log('JSON', this.trainingResult);