aboutsummaryrefslogtreecommitdiff
path: root/backend/api
diff options
context:
space:
mode:
authorDanijel Anđelković <adanijel99@gmail.com>2022-05-25 23:45:24 +0200
committerDanijel Anđelković <adanijel99@gmail.com>2022-05-25 23:45:24 +0200
commit305dac6f0e327a2582dc4f93e83794b5169d7c8f (patch)
tree00691935b0f33ed513f29ef11e1e8713b6b03f31 /backend/api
parent54a1eaf3b2176a41dcd2677eb64843638852c371 (diff)
Popravio dosta bugova vezane za prebacivanje izmedju novog dataseta, i postojeceg dataseta, isto i za modele, u folderu. Popravio presporo prebacivanje sa jednog taba na drugi u folderu. Popravio pogresan tip stope normalizacije na backendu.
Diffstat (limited to 'backend/api')
-rw-r--r--backend/api/api/Models/Model.cs4
-rw-r--r--backend/api/api/Services/FillAnEmptyDb.cs36
2 files changed, 20 insertions, 20 deletions
diff --git a/backend/api/api/Models/Model.cs b/backend/api/api/Models/Model.cs
index bbbf201e..6278cf8a 100644
--- a/backend/api/api/Models/Model.cs
+++ b/backend/api/api/Models/Model.cs
@@ -44,7 +44,7 @@ namespace api.Models
{
- public Layer(int layerNumber, string activationFunction, int neurons, string regularisation, float regularisationRate)
+ public Layer(int layerNumber, string activationFunction, int neurons, string regularisation, string regularisationRate)
{
this.layerNumber = layerNumber;
this.activationFunction = activationFunction;
@@ -57,7 +57,7 @@ namespace api.Models
public string activationFunction { get; set; }
public int neurons { get; set; }
public string regularisation { get; set; }
- public float regularisationRate { get; set; }
+ public string regularisationRate { get; set; }
}
}
diff --git a/backend/api/api/Services/FillAnEmptyDb.cs b/backend/api/api/Services/FillAnEmptyDb.cs
index cd35dc78..c74de67d 100644
--- a/backend/api/api/Services/FillAnEmptyDb.cs
+++ b/backend/api/api/Services/FillAnEmptyDb.cs
@@ -117,10 +117,10 @@ namespace api.Services
model.outputNeurons = 0;
model.layers = new[]
{
- new Layer ( 0,"sigmoid", 3,"l1", 1f ),
- new Layer ( 1,"sigmoid", 3,"l1", 1f ),
- new Layer ( 2,"sigmoid", 3,"l1", 1f ),
- new Layer ( 3,"sigmoid", 3,"l1", 1f ),
+ new Layer ( 0,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 1,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 2,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 3,"sigmoid", 3,"l1", "0" ),
};
model.outputLayerActivationFunction = "sigmoid";
model.metrics = new string[] { };
@@ -281,11 +281,11 @@ namespace api.Services
model.outputNeurons = 0;
model.layers = new[]
{
- new Layer ( 0,"softmax", 3,"l1", 3f ),
- new Layer ( 1,"softmax", 3,"l1", 3f ),
- new Layer ( 2,"softmax", 3,"l1", 3f ),
- new Layer ( 3,"softmax", 3,"l1", 3f ),
- new Layer ( 4,"softmax", 3,"l1", 3f )
+ new Layer ( 0,"softmax", 3,"l1", "0" ),
+ new Layer ( 1,"softmax", 3,"l1", "0" ),
+ new Layer ( 2,"softmax", 3,"l1", "0" ),
+ new Layer ( 3,"softmax", 3,"l1", "0" ),
+ new Layer ( 4,"softmax", 3,"l1", "0" )
};
model.outputLayerActivationFunction = "softmax";
model.metrics = new string[] { };
@@ -435,9 +435,9 @@ namespace api.Services
model.outputNeurons = 0;
model.layers = new[]
{
- new Layer ( 0,"relu", 3,"l1", 1f ),
- new Layer ( 1,"relu", 3,"l1", 1f ),
- new Layer ( 2,"relu", 3,"l1", 1f )
+ new Layer ( 0,"relu", 3,"l1", "0" ),
+ new Layer ( 1,"relu", 3,"l1", "0" ),
+ new Layer ( 2,"relu", 3,"l1", "0" )
};
model.outputLayerActivationFunction = "relu";
model.metrics = new string[] { };
@@ -593,10 +593,10 @@ namespace api.Services
model.outputNeurons = 0;
model.layers = new[]
{
- new Layer ( 0,"sigmoid", 3,"l1", 1f ),
- new Layer ( 1,"sigmoid", 3,"l1", 1f ),
- new Layer ( 2,"sigmoid", 3,"l1", 1f ),
- new Layer ( 3,"sigmoid", 3,"l1", 1f )
+ new Layer ( 0,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 1,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 2,"sigmoid", 3,"l1", "0" ),
+ new Layer ( 3,"sigmoid", 3,"l1", "0" )
};
model.outputLayerActivationFunction = "sigmoid";
model.metrics = new string[] { };
@@ -748,8 +748,8 @@ namespace api.Services
model.outputNeurons = 0;
model.layers = new[]
{
- new Layer ( 0,"relu", 3,"l1", 1f ),
- new Layer ( 1,"relu", 3,"l1", 1f )
+ new Layer ( 0,"relu", 3,"l1", "0" ),
+ new Layer ( 1,"relu", 3,"l1", "0" )
};
model.outputLayerActivationFunction = "relu";
model.metrics = new string[] { };