aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
authorTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 21:52:40 +0200
committerTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 21:53:17 +0200
commit66c147bc3154e531cfc78591a7451d904122fc1f (patch)
tree594bfb029c004a69800938087dc1586e31067a24 /backend/microservice/api/controller.py
parent3a9bffc6da590fd1a98a0c885d608d40849cffd4 (diff)
Ispravljeno obaveštavanje backend-a o epohama.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py18
1 files changed, 14 insertions, 4 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 437690ee..f0f36907 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,4 +1,6 @@
+from cmath import log
from dataclasses import dataclass
+from distutils.command.upload import upload
from gc import callbacks
from xmlrpc.client import DateTime
import flask
@@ -31,16 +33,24 @@ class Predictor:
class train_callback(tf.keras.callbacks.Callback):
- def __init__(self, x_test, y_test):
+ def __init__(self, x_test, y_test,modelId):
self.x_test = x_test
self.y_test = y_test
+ self.modelId=modelId
#
def on_epoch_end(self, epoch, logs=None):
- print(epoch)
+ #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n")
+
+ #print(epoch)
+
+ #print(logs)
+
#ml_socket.send(epoch)
#file = request.files.get("file")
url = config.api_url + "/Model/epoch"
- requests.post(url, epoch).text
+ r=requests.post(url, json={"Stat":str(logs),"ModelId":str(self.modelId),"EpochNum":epoch}).text
+
+ #print(r)
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default
@app.route('/train', methods = ['POST'])
@@ -63,7 +73,7 @@ def train():
url = config.api_url + "/file/h5"
files = {'file': open(filepath, 'rb')}
- r=requests.post(url, files=files)
+ r=requests.post(url, files=files,data={"uploaderId":paramsExperiment['uploaderId']})
fileId=r.text
predictor = Predictor(
_id = "",