diff options
author | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-04-16 21:52:40 +0200 |
---|---|---|
committer | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-04-16 21:53:17 +0200 |
commit | 66c147bc3154e531cfc78591a7451d904122fc1f (patch) | |
tree | 594bfb029c004a69800938087dc1586e31067a24 /backend/microservice/api/controller.py | |
parent | 3a9bffc6da590fd1a98a0c885d608d40849cffd4 (diff) |
Ispravljeno obaveštavanje backend-a o epohama.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r-- | backend/microservice/api/controller.py | 18 |
1 files changed, 14 insertions, 4 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py index 437690ee..f0f36907 100644 --- a/backend/microservice/api/controller.py +++ b/backend/microservice/api/controller.py @@ -1,4 +1,6 @@ +from cmath import log from dataclasses import dataclass +from distutils.command.upload import upload from gc import callbacks from xmlrpc.client import DateTime import flask @@ -31,16 +33,24 @@ class Predictor: class train_callback(tf.keras.callbacks.Callback): - def __init__(self, x_test, y_test): + def __init__(self, x_test, y_test,modelId): self.x_test = x_test self.y_test = y_test + self.modelId=modelId # def on_epoch_end(self, epoch, logs=None): - print(epoch) + #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") + + #print(epoch) + + #print(logs) + #ml_socket.send(epoch) #file = request.files.get("file") url = config.api_url + "/Model/epoch" - requests.post(url, epoch).text + r=requests.post(url, json={"Stat":str(logs),"ModelId":str(self.modelId),"EpochNum":epoch}).text + + #print(r) #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default @app.route('/train', methods = ['POST']) @@ -63,7 +73,7 @@ def train(): url = config.api_url + "/file/h5" files = {'file': open(filepath, 'rb')} - r=requests.post(url, files=files) + r=requests.post(url, files=files,data={"uploaderId":paramsExperiment['uploaderId']}) fileId=r.text predictor = Predictor( _id = "", |