aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
authorDanijel Andjelkovic <adanijel99@gmail.com>2022-04-07 13:25:02 +0200
committerDanijel Andjelkovic <adanijel99@gmail.com>2022-04-07 13:25:02 +0200
commit724000d1dc30f456d77d39a233a309bb9e36f5a9 (patch)
tree3e77444701c1def532ddbbb2905e20fc2d09303c /backend/microservice/api/controller.py
parentba4eba6116cba39fab60a7ade8cb9f436dee0bca (diff)
Ispravio mlkrontroler backend i frontend tako da je dataset sinhronizovan i osposobio preprocesiranje.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py23
1 files changed, 15 insertions, 8 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 1b17f727..ff803358 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -4,6 +4,7 @@ import ml_socket
import newmlservice
import tensorflow as tf
import pandas as pd
+import json
app = flask.Flask(__name__)
app.config["DEBUG"] = True
@@ -41,14 +42,20 @@ def predict():
@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():
- f=request.json['filepathcolinfo']
- dataset=pd.read_csv(f)
-
- result=newmlservice.returnColumnsInfo(dataset)
-
- return jsonify(result)
-
-
+ print("********************************PREPROCESS*******************************")
+ dataset = json.loads(request.form["dataset"])
+ file = request.files.get("file")
+ data=pd.read_csv(file)
+ preprocess = newmlservice.returnColumnsInfo(data)
+ #samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
+ for col in preprocess["columnInfo"]:
+ col["uniqueValues"] = col["uniqueValues"][0:10]
+ dataset["columnInfo"] = preprocess["columnInfo"]
+ dataset["nullCols"] = preprocess["allNullColl"]
+ dataset["nullRows"] = preprocess["allNullRows"]
+ dataset["isPreProcess"] = True
+ print(dataset)
+ return jsonify(dataset)
print("App loaded.")
ml_socket.start()