diff options
author | Danijel Anđelković <adanijel99@gmail.com> | 2022-04-16 18:17:07 +0200 |
---|---|---|
committer | Danijel Anđelković <adanijel99@gmail.com> | 2022-04-16 18:18:29 +0200 |
commit | d76cb349ef8d5254780e3ffb6afa7080513f2332 (patch) | |
tree | 9c991d63f9f7c8b6de9202bd2da980da29a02edf /backend/microservice/api/controller.py | |
parent | e8db6c2081155f9c4fed7c8a06e37e89a7398101 (diff) |
Update-ovao ML kontroler za predict.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r-- | backend/microservice/api/controller.py | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py index 8e12c41d..d7564b70 100644 --- a/backend/microservice/api/controller.py +++ b/backend/microservice/api/controller.py @@ -9,7 +9,7 @@ import config app = flask.Flask(__name__) app.config["DEBUG"] = True -app.config["SERVER_NAME"] = "127.0.0.1:5543" +app.config["SERVER_NAME"] = config.hostIP class train_callback(tf.keras.callbacks.Callback): def __init__(self, x_test, y_test): @@ -33,19 +33,19 @@ def train(): paramsExperiment = json.loads(request.form["experiment"]) paramsDataset = json.loads(request.form["dataset"]) #dataset, paramsModel, paramsExperiment, callback) - result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback) + result = newmlservice.train(data, paramsModel, paramsExperiment, paramsDataset, train_callback) print(result) return jsonify(result) @app.route('/predict', methods = ['POST']) def predict(): - f = request.json['filepath'] - dataset = pd.read_csv(f) - m = request.json['modelpath'] - model = tf.keras.models.load_model(m) + h5 = request.files.get("h5file") + model = tf.keras.models.load_model(h5) + paramsExperiment = json.loads(request.form["experiment"]) + paramsPredictor = json.loads(request.form["predictor"]) print("********************************model loaded*******************************") - newmlservice.manageH5(dataset,request.json['model'],model) - return "done" + result = newmlservice.predict(paramsExperiment, paramsPredictor, model) + return result @app.route('/preprocess',methods=['POST']) def returnColumnsInfo(): |