aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
authorDanijel Anđelković <adanijel99@gmail.com>2022-04-16 18:17:07 +0200
committerDanijel Anđelković <adanijel99@gmail.com>2022-04-16 18:18:29 +0200
commitd76cb349ef8d5254780e3ffb6afa7080513f2332 (patch)
tree9c991d63f9f7c8b6de9202bd2da980da29a02edf /backend/microservice/api/controller.py
parente8db6c2081155f9c4fed7c8a06e37e89a7398101 (diff)
Update-ovao ML kontroler za predict.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 8e12c41d..d7564b70 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -9,7 +9,7 @@ import config
app = flask.Flask(__name__)
app.config["DEBUG"] = True
-app.config["SERVER_NAME"] = "127.0.0.1:5543"
+app.config["SERVER_NAME"] = config.hostIP
class train_callback(tf.keras.callbacks.Callback):
def __init__(self, x_test, y_test):
@@ -33,19 +33,19 @@ def train():
paramsExperiment = json.loads(request.form["experiment"])
paramsDataset = json.loads(request.form["dataset"])
#dataset, paramsModel, paramsExperiment, callback)
- result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback)
+ result = newmlservice.train(data, paramsModel, paramsExperiment, paramsDataset, train_callback)
print(result)
return jsonify(result)
@app.route('/predict', methods = ['POST'])
def predict():
- f = request.json['filepath']
- dataset = pd.read_csv(f)
- m = request.json['modelpath']
- model = tf.keras.models.load_model(m)
+ h5 = request.files.get("h5file")
+ model = tf.keras.models.load_model(h5)
+ paramsExperiment = json.loads(request.form["experiment"])
+ paramsPredictor = json.loads(request.form["predictor"])
print("********************************model loaded*******************************")
- newmlservice.manageH5(dataset,request.json['model'],model)
- return "done"
+ result = newmlservice.predict(paramsExperiment, paramsPredictor, model)
+ return result
@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():