aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
diff options
context:
space:
mode:
authorTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 19:42:35 +0200
committerTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 19:42:35 +0200
commitfdd1bdcbe113c568dbeef4de6b9a5ad3c9652ef8 (patch)
tree352c24fcfe1f13726f124a8ae23b15b614800c7d /backend/microservice/api/controller.py
parent0839b7a0217160214cce8ae881fa0b76810850df (diff)
Dodat zahtev za čuvanje h5 fajla treniranog modela.
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r--backend/microservice/api/controller.py14
1 files changed, 13 insertions, 1 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index d7564b70..d2b8ed2c 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,3 +1,4 @@
+from gc import callbacks
import flask
from flask import request, jsonify
import newmlservice
@@ -27,14 +28,25 @@ class train_callback(tf.keras.callbacks.Callback):
@app.route('/train', methods = ['POST'])
def train():
print("******************************TRAIN*************************************************")
+
f = request.files.get("file")
data = pd.read_csv(f)
paramsModel = json.loads(request.form["model"])
paramsExperiment = json.loads(request.form["experiment"])
paramsDataset = json.loads(request.form["dataset"])
#dataset, paramsModel, paramsExperiment, callback)
- result = newmlservice.train(data, paramsModel, paramsExperiment, paramsDataset, train_callback)
+ filepath,result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback)
+ """
+ f = request.json['filepath']
+ dataset = pd.read_csv(f)
+ filepath,result=newmlservice.train(dataset,request.json['model'],train_callback)
print(result)
+ """
+
+ url = config.api_url + "/file/h5"
+ files = {'file': open(filepath, 'rb')}
+ r=requests.post(url, files=files)
+ fileId=r.text
return jsonify(result)
@app.route('/predict', methods = ['POST'])