aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/ml_service.py
diff options
context:
space:
mode:
authorNevena Bojovic <nenabojov@gmail.com>2022-04-11 23:10:56 +0200
committerNevena Bojovic <nenabojov@gmail.com>2022-04-11 23:10:56 +0200
commita2002894eb5679006f0f7b89b2294ab83c8213c1 (patch)
treecafbb6a058950c1a1df9058b254d9610205a5bc5 /backend/microservice/api/ml_service.py
parentc897608e7176d3e505433965ce945277017d9285 (diff)
Za regresioni i binarni-klasifikacioni problem, ucitavanje broja neurona po slojevima, nije vise fiksan broj neurona po sloju.
Diffstat (limited to 'backend/microservice/api/ml_service.py')
-rw-r--r--backend/microservice/api/ml_service.py6
1 files changed, 4 insertions, 2 deletions
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py
index 0aed3dc9..b5f5e9bf 100644
--- a/backend/microservice/api/ml_service.py
+++ b/backend/microservice/api/ml_service.py
@@ -198,7 +198,7 @@ def train(dataset, params, callback):
random=123
else:
random=0
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=0)
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=random)
#
# Skaliranje vrednosti
#
@@ -246,7 +246,9 @@ def train(dataset, params, callback):
classifier=tf.keras.Sequential()
for func in params["hiddenLayerActivationFunctions"]:
- classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=func))
+ layers = params["hiddenLayers"]
+ for numNeurons in params["hiddenLayerNeurons"]:
+ classifier.add(tf.keras.layers.Dense(units=numNeurons,activation=func))
output_func = params["outputLayerActivationFunction"]
if(problem_type!="regresioni"):