aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/newmlservice.py
diff options
context:
space:
mode:
authorTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 21:52:40 +0200
committerTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 21:53:17 +0200
commit66c147bc3154e531cfc78591a7451d904122fc1f (patch)
tree594bfb029c004a69800938087dc1586e31067a24 /backend/microservice/api/newmlservice.py
parent3a9bffc6da590fd1a98a0c885d608d40849cffd4 (diff)
Ispravljeno obaveštavanje backend-a o epohama.
Diffstat (limited to 'backend/microservice/api/newmlservice.py')
-rw-r--r--backend/microservice/api/newmlservice.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 585db480..a9bce3bb 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -252,7 +252,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
opt=tf.keras.optimizers.RMSprop(learning_rate=params['learningRate'])
###REGULARIZACIJA
- #regularisation={'kernelType':'l1 ili l2 ili l1_l2','krenelRate':default=0.01 ili jedna od vrednosti(0.0001,0.001,0.1,1,2,3) ili neka koju je korisnik zadao,'biasType':'','biasRate':'','activityType','activityRate'}
+ #regularisation={'kernelType':'l1 ili l2 ili l1_l2','kernelRate':default=0.01 ili jedna od vrednosti(0.0001,0.001,0.1,1,2,3) ili neka koju je korisnik zadao,'biasType':'','biasRate':'','activityType','activityRate'}
reg=params['regularisation']
###Kernel
@@ -279,7 +279,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
elif(reg['kernelType']=='l1l2'):
activityreg=tf.keras.regularizers.l1_l2(l1=reg['activityRate'][0],l2=reg['activityRate'][1])
"""
- filepath=os.path.join("temp/",paramsExperiment['_id']+"_"+paramsModel['_id'])
+ filepath=os.path.join("temp/",paramsExperiment['_id']+"_"+paramsModel['_id']+".h5")
if(problem_type=='multi-klasifikacioni'):
#print('multi')
classifier=tf.keras.Sequential()
@@ -294,7 +294,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'])
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
#plt.plot(hist['accuracy'])
@@ -326,7 +326,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'])
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -352,7 +352,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'])
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))