aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorNevena Bojovic <nenabojov@gmail.com>2022-04-16 20:05:30 +0200
committerNevena Bojovic <nenabojov@gmail.com>2022-04-16 20:05:30 +0200
commit41bfcba0af1f375349b9fb1935aeb0e0856adff9 (patch)
tree9b41ea5e910869a4dcf7784ee8f84b3cd02542e8 /backend/microservice/api
parentfdd1bdcbe113c568dbeef4de6b9a5ad3c9652ef8 (diff)
Pravi se predictor na ML.
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/controller.py33
1 files changed, 32 insertions, 1 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index d2b8ed2c..95ceccbb 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,4 +1,6 @@
+from dataclasses import dataclass
from gc import callbacks
+from xmlrpc.client import DateTime
import flask
from flask import request, jsonify
import newmlservice
@@ -7,11 +9,27 @@ import pandas as pd
import json
import requests
import config
+from datetime import datetime
app = flask.Flask(__name__)
app.config["DEBUG"] = True
app.config["SERVER_NAME"] = config.hostIP
-
+
+@dataclass
+class Predictor:
+ _id : str
+ username: str
+ inputs : list
+ output : str
+ isPublic: bool
+ accessibleByLink: bool
+ dateCreated: DateTime
+ experimentId: str
+ modelId: str
+ h5FileId: str
+ metrics: list
+
+
class train_callback(tf.keras.callbacks.Callback):
def __init__(self, x_test, y_test):
self.x_test = x_test
@@ -47,6 +65,19 @@ def train():
files = {'file': open(filepath, 'rb')}
r=requests.post(url, files=files)
fileId=r.text
+ predictor = Predictor()
+ predictor._id = ""
+ predictor.username = paramsModel["username"]
+ predictor.inputs = paramsExperiment["inputColumns"]
+ predictor.output = paramsExperiment["outputColumn"]
+ predictor.isPublic = False
+ predictor.accessibleByLink = False
+ predictor.dateCreated = datetime.now()
+ predictor.experimentId = paramsExperiment["_id"]
+ predictor.modelId = paramsModel["_id"]
+ predictor.h5FileId = fileId
+
+ print(result)
return jsonify(result)
@app.route('/predict', methods = ['POST'])