aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorDanijel Anđelković <adanijel99@gmail.com>2022-06-06 05:24:26 +0200
committerDanijel Anđelković <adanijel99@gmail.com>2022-06-06 05:24:26 +0200
commit5dc30c02319ba9fa8e8ddb33e9574272f05598fe (patch)
treee514ed32fe74b2b47dd04cd78e796daa4e28d6a1 /backend/microservice/api
parentd1763481d6c08c955885ed490a284e634a56296b (diff)
parentec46487761e888935411cf4daa9e740913f2ee9b (diff)
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/controller.py5
-rw-r--r--backend/microservice/api/newmlservice.py13
2 files changed, 11 insertions, 7 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index c82634a2..bc8c17a0 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -1,3 +1,4 @@
+from asyncio.windows_events import NULL
from cmath import log
from dataclasses import dataclass
from distutils.command.upload import upload
@@ -112,12 +113,12 @@ def train():
"metricsMse":histMetrics[6],
"metricsValMse":histMetrics[7]
}
- #print(predictor)
+ print(predictor)
url = config.api_url + "/Predictor/add"
r = requests.post(url, json=predictor).text
- #print(r)
+ print(r)
return r
@app.route('/predict', methods = ['POST'])
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 99e3cae5..943e18a1 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -1,3 +1,4 @@
+from cmath import nan
from enum import unique
from itertools import count
import os
@@ -374,13 +375,15 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['accuracy'])
history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val))
hist=history.history
#plt.plot(hist['accuracy'])
- #plt.show()
+ plt.plot(history.history['loss'])
+ plt.plot(history.history['val_loss'])
+ plt.show()
y_pred=classifier.predict(x_test)
y_pred=np.argmax(y_pred,axis=1)
@@ -410,7 +413,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
#from ann_visualizer.visualize import ann_viz;
#ann_viz(classifier, title="My neural network")
- return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],hist['mae'],hist['val_mae'],hist['mse'],hist['val_mse']]
+ return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],[],[],[],[]]
elif(problem_type=='binarni-klasifikacioni'):
#print('*************************************************************************binarni')
@@ -444,7 +447,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt , metrics = ['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt , metrics = ['accuracy'])
history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val))
hist=history.history
@@ -468,7 +471,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
logloss = float(sm.log_loss(y_test, y_pred))
"""
- return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],hist['mae'],hist['val_mae'],hist['mse'],hist['val_mse']]
+ return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],[],[],[],[]]
elif(problem_type=='regresioni'):
reg=paramsModel['layers'][0]['regularisation']