aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorNevena Bojovic <nenabojov@gmail.com>2022-04-13 21:44:32 +0200
committerNevena Bojovic <nenabojov@gmail.com>2022-04-13 21:44:32 +0200
commit8568f5eadf09ff9536aa19054a129ab4aec49991 (patch)
treed0ef5278d5c763e5325b9af88401d01489959dff /backend/microservice/api
parentea53b083e0513ddcd1faa1a6de9c89c9671e4eb3 (diff)
Doradjen training zahtev.
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/config.py2
-rw-r--r--backend/microservice/api/controller.py15
-rw-r--r--backend/microservice/api/ml_service.py2
-rw-r--r--backend/microservice/api/ml_socket.py30
4 files changed, 13 insertions, 36 deletions
diff --git a/backend/microservice/api/config.py b/backend/microservice/api/config.py
new file mode 100644
index 00000000..2b6fbe89
--- /dev/null
+++ b/backend/microservice/api/config.py
@@ -0,0 +1,2 @@
+api_url = "http://localhost:5283/api"
+
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 4d9f8f2a..937e643b 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -5,6 +5,8 @@ import newmlservice
import tensorflow as tf
import pandas as pd
import json
+import requests
+import config
app = flask.Flask(__name__)
app.config["DEBUG"] = True
@@ -17,16 +19,19 @@ class train_callback(tf.keras.callbacks.Callback):
#
def on_epoch_end(self, epoch, logs=None):
print(epoch)
- ml_socket.send(epoch)
+ #ml_socket.send(epoch)
+ #file = request.files.get("file")
+ url = config.api_url + "/Model/epoch"
+ requests.post(url, epoch).text
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default
@app.route('/train', methods = ['POST'])
def train():
print("******************************TRAIN*************************************************")
- f = request.json["dataset"]
- dataset = pd.read_csv(f)
- #
- result = newmlservice.train(dataset, request.json["model"], train_callback)
+ f = request.files.get("file")
+ data = pd.read_csv(f)
+ #dataset, paramsModel, paramsExperiment, callback)
+ result = newmlservice.train(data, request.json["model"], request.json["experiment"], request.json["dataset"], train_callback)
print(result)
return jsonify(result)
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py
index 4d2212f7..16ee7cc6 100644
--- a/backend/microservice/api/ml_service.py
+++ b/backend/microservice/api/ml_service.py
@@ -101,7 +101,7 @@ class TrainingResultRegression:
class TrainingResult:
metrics: dict
'''
-def train(dataset, paramsModel, paramsExperiment, callback):
+def train(dataset, paramsModel, paramsExperiment, paramsDataset, callback):
problem_type = paramsModel["type"]
dataModel = pd.DataFrame()
dataExperiment = pd.DataFrame()
diff --git a/backend/microservice/api/ml_socket.py b/backend/microservice/api/ml_socket.py
deleted file mode 100644
index cab157eb..00000000
--- a/backend/microservice/api/ml_socket.py
+++ /dev/null
@@ -1,30 +0,0 @@
-import asyncio
-import websockets
-import json
-
-def get_or_create_eventloop():
- try:
- return asyncio.get_event_loop()
- except RuntimeError as ex:
- if "There is no current event loop in thread" in str(ex):
- loop = asyncio.new_event_loop()
- asyncio.set_event_loop(loop)
- return asyncio.get_event_loop()
-
-# create handler for each connection
-async def handler(websocket, path):
- #data = json.loads(await websocket.recv())
- #print(data['test'])
- msg = await websocket.recv()
- print(msg)
-
-async def start():
- start_server = websockets.serve(handler, "localhost", 5027)
- print('Websocket starting...')
- get_or_create_eventloop().run_until_complete(start_server)
- get_or_create_eventloop().run_forever()
-
-async def send(msg):
- print("WS sending message:")
- print(msg)
- await websocket.send(msg) \ No newline at end of file