aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorDanijel Anđelković <adanijel99@gmail.com>2022-04-20 00:04:19 +0200
committerDanijel Anđelković <adanijel99@gmail.com>2022-04-20 00:04:19 +0200
commitb25af94d6df8854129e99f77638e4013a9c57086 (patch)
tree46496e2d5630de85244e6814024e3f289c6c84e8 /backend/microservice/api
parent092ea8c9a0a80857e2da47abc789d48d79af405a (diff)
Povezao metric view komponentu, chart, sa signalR tako da se iscrtavaju metrike modela kako se trenira. Ispravio neke bug-ove.
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/newmlservice.py20
1 files changed, 16 insertions, 4 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 9e09186f..6cbda69c 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -129,7 +129,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
###NULL
null_value_options = paramsExperiment["nullValues"]
null_values_replacers = paramsExperiment["nullValuesReplacers"]
-
+
if(null_value_options=='replace'):
#print("replace null") #
dict=null_values_replacers
@@ -138,8 +138,13 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
col=replace['column']
opt=replace['option']
if(opt=='replace'):
- replacevalue=replace['value']
- data[col]=data[col].fillna(replacevalue)
+ val = replace['value']
+ if(data[col].dtype == 'int64'):
+ val = np.int64(val)
+ elif(data[col].dtype == 'float64'):
+ val = np.float64(val)
+ #elif(data[col].dtype == 'object'):
+ data[col]=data[col].fillna(val)
elif(null_value_options=='delete_rows'):
data=data.dropna()
elif(null_value_options=='delete_columns'):
@@ -167,7 +172,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
'''
- encodings=paramsExperiment["encoding"]
+ encodings=paramsExperiment["encodings"]
datafront=dataset.copy()
svekolone=datafront.columns
kategorijskekolone=datafront.select_dtypes(include=['object']).columns
@@ -232,6 +237,13 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
#print(x_columns)
x = data[x_columns].values
y = data[output_column].values
+ print('-----------------dfghfhgfhfg-------------------------------')
+ print(x)
+ print('-----------------dfghfhgfhfg-------------------------------')
+ print(y)
+ print('-----------------dfghfhgfhfg-------------------------------')
+ print(output_column)
+ print('-----------------dfghfhgfhfg-------------------------------')
#
# Podela na test i trening skupove