diff options
author | Sonja Galovic <galovicsonja@gmail.com> | 2022-05-04 20:47:19 +0200 |
---|---|---|
committer | Sonja Galovic <galovicsonja@gmail.com> | 2022-05-04 20:47:19 +0200 |
commit | bae455c30570d97ded6a291238f2393628d7cefa (patch) | |
tree | dc2b9cb7cb34e2499dd2feb0bb61fbbf2500b5a6 /backend/microservice/api | |
parent | eee8b1f3790b243be19b015a37a2acd4e882b31e (diff) | |
parent | 0e945bd6f428edb13718aed247209f215b93e735 (diff) |
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into redesign
Diffstat (limited to 'backend/microservice/api')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 3244e82f..9e26b03a 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -349,7 +349,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history #plt.plot(hist['accuracy']) @@ -403,7 +403,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -452,7 +452,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) |