diff options
author | Nevena Bojovic <nenabojov@gmail.com> | 2022-04-19 21:06:28 +0200 |
---|---|---|
committer | Nevena Bojovic <nenabojov@gmail.com> | 2022-04-19 21:06:28 +0200 |
commit | ba8a9752a72a07840e12320dbb448f1391fdccad (patch) | |
tree | cd9a52c3f02dfbb2c9a24a90ccfea679c44472b3 /backend/microservice | |
parent | 5d5aef8ad980934b98c48391bf53fb41e2481b5d (diff) | |
parent | 3ee39c4a5c0dfccc4fcb429762e5a7cc026da4a0 (diff) |
Merge branch 'dev' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into dev
# Conflicts:
# frontend/src/app/app.module.ts
Diffstat (limited to 'backend/microservice')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 19 |
1 files changed, 15 insertions, 4 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 604e4d3c..f5122a06 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -156,6 +156,15 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): # ### Enkodiranje encodings=paramsExperiment["encodings"] + + from sklearn.preprocessing import LabelEncoder + kategorijskekolone=data.select_dtypes(include=['object']).columns + encoder=LabelEncoder() + for kolona in data.columns: + if(kolona in kategorijskekolone): + data[kolona]=encoder.fit_transform(data[kolona]) + ''' + encoding=paramsExperiment["encoding"] datafront=dataset.copy() svekolone=datafront.columns kategorijskekolone=datafront.select_dtypes(include=['object']).columns @@ -207,6 +216,8 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): category_columns.append(col) encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5) encoder.fit_transform(data) + + ''' # # Input - output # @@ -301,7 +312,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) @@ -333,7 +344,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history @@ -359,7 +370,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj classifier.add(tf.keras.layers.Dense(units=1)) - classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =paramsModel['metrics']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse']) history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history @@ -529,7 +540,7 @@ def manageH5(dataset,params,h5model): h5model.summary() #ann_viz(h5model, title="My neural network") - h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics']) + h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['accuracy','']) history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize']) |