aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
authorSonja Galovic <galovicsonja@gmail.com>2022-05-04 21:09:00 +0200
committerSonja Galovic <galovicsonja@gmail.com>2022-05-04 21:09:00 +0200
commitda27997809160bfea0e134f7a2f44d63174447f5 (patch)
treed8d752e67bc555150eb04cb812fa95263737ced6 /backend/microservice
parentae29f2f27d680d4152d3f19eb1db284aa951d0cd (diff)
parent5f45f5daf61359b039a6154c324a6e6452f0b8a9 (diff)
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into redesign
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/controller.py7
-rw-r--r--backend/microservice/api/newmlservice.py17
2 files changed, 17 insertions, 7 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py
index 41035cc7..988ad987 100644
--- a/backend/microservice/api/controller.py
+++ b/backend/microservice/api/controller.py
@@ -118,7 +118,6 @@ def returnColumnsInfo():
'''
preprocess = newmlservice.returnColumnsInfo(data)
#samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
-
for col in preprocess["columnInfo"]:
col["uniqueValues"] = col["uniqueValues"][0:6]
col["uniqueValuesCount"] = col["uniqueValuesCount"][0:6]
@@ -128,11 +127,9 @@ def returnColumnsInfo():
dataset["nullRows"] = preprocess["allNullRows"]
dataset["colCount"] = preprocess["colCount"]
dataset["rowCount"] = preprocess["rowCount"]
+ dataset["cMatrix"]=preprocess['cMatrix']
dataset["isPreProcess"] = True
- #print(dataset)
-
-
-
+
return jsonify(dataset)
print("App loaded.")
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 9e26b03a..f5e5abcc 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -27,15 +27,28 @@ import matplotlib.pyplot as plt
#from ann_visualizer.visualize import ann_viz;
def returnColumnsInfo(dataset):
dict=[]
+
datafront=dataset.copy()
+ dataMatrix=dataset.copy()
+
+
svekolone=datafront.columns
kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+
allNullCols=0
rowCount=datafront.shape[0]#ukupan broj redova
colCount=len(datafront.columns)#ukupan broj kolona
for kolona in svekolone:
if(kolona in kategorijskekolone):
+ encoder=LabelEncoder()
+ dataMatrix[kolona]=encoder.fit_transform(dataMatrix[kolona])
+
+ #print(dataMatrix.dtypes)
+ cMatrix=dataMatrix.corr()
+
+ for kolona in svekolone:
+ if(kolona in kategorijskekolone):
unique=datafront[kolona].value_counts()
uniquevalues=[]
uniquevaluescount=[]
@@ -86,7 +99,7 @@ def returnColumnsInfo(dataset):
#pretvaranje u kategorijsku
datafront = datafront.astype({kolona: str})
- print(datafront.dtypes)
+ #print(datafront.dtypes)
unique=datafront[kolona].value_counts()
uniquevaluesn=[]
uniquevaluescountn=[]
@@ -117,7 +130,7 @@ def returnColumnsInfo(dataset):
#print(NullRows)
#print(len(NullRows))
allNullRows=len(NullRows)
- return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount)}
+ return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':str(np.matrix(cMatrix))}
@dataclass
class TrainingResultClassification: