aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
authorSonja Galovic <galovicsonja@gmail.com>2022-05-18 14:00:44 +0200
committerSonja Galovic <galovicsonja@gmail.com>2022-05-18 14:00:44 +0200
commitf3e4093e5a29eadd61a00a3a05668e3e24b7d40d (patch)
tree613df1a3ed2afa08f450267667732854dcd51134 /backend/microservice
parent9233e6f193f68a0477e2900ac7a82928ab7f4adc (diff)
parentaa71097de7e95658c0cfa3e7d212f018aa917baf (diff)
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into redesign
# Conflicts: # frontend/src/app/_elements/column-table/column-table.component.html # frontend/src/app/_pages/experiment/experiment.component.ts
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/newmlservice.py9
1 files changed, 5 insertions, 4 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 6a863013..fd21f8ce 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -291,11 +291,12 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
random=123
else:
random=0
+
+
#x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
#print(x_train,x_test)
x, x_test, y, y_test = train_test_split(x, y, test_size=test, random_state=random, shuffle=True)
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.15, shuffle=True)
- #
# Treniranje modela
#
#
@@ -369,7 +370,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['mae','mse'])
history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val))
@@ -507,9 +508,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
- classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
+ classifier.add(tf.keras.layers.Dense(units=1))
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['mae','mse'])
history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val))
hist=history.history