aboutsummaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
authorTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-08 20:03:01 +0200
committerTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-08 20:03:42 +0200
commit046f40af17e6144f98c9ca7fdaf069f270895136 (patch)
tree65c3492a016934acad0b5dc9e8a7621e57d84fa2 /backend
parent512390ec434fdea464807add0c40687ade73dfa5 (diff)
Omogućen izbor learning rate-a.
Diffstat (limited to 'backend')
-rw-r--r--backend/microservice/api/newmlservice.py25
1 files changed, 25 insertions, 0 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 02f2ad6d..a92307c5 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -222,6 +222,31 @@ def train(dataset, params, callback):
classifier.add(tf.keras.layers.Dense(units=params['hiddenLayerNeurons'], activation=params['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
classifier.add(tf.keras.layers.Dense(units=5, activation=params['outputLayerActivationFunction']))#izlazni sloj
+ if(params['optimizer']=='Adam'):
+ opt=tf.keras.optimizers.Adam(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='Adadelta'):
+ opt=tf.keras.optimizers.Adadelta(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='Adagrad'):
+ opt=tf.keras.optimizers.Adagrad(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='Adamax'):
+ opt=tf.keras.optimizers.Adamax(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='Nadam'):
+ opt=tf.keras.optimizers.Nadam(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='SGD'):
+ opt=tf.keras.optimizers.SGD(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='Ftrl'):
+ opt=tf.keras.optimizers.Ftrl(learning_rate=params['learningRate'])
+
+ elif(params['optimizer']=='RMSprop'):
+ opt=tf.keras.optimizers.RMSprop(learning_rate=params['learningRate'])
+
+
classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])