diff options
author | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-04-16 00:42:36 +0200 |
---|---|---|
committer | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-04-16 00:42:36 +0200 |
commit | 73a539f449f2f6ec7bc7adaa18ebbe1b1b45ad9c (patch) | |
tree | dbff17f0f444b06f3da4a4a99d59682861b8d822 /backend | |
parent | 8733ac0770aab10231b59d0398acd33765936247 (diff) |
Omogućeno prikupljanje rezultata metrika nakon završenog treniranja modela.
Diffstat (limited to 'backend')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 19 |
1 files changed, 12 insertions, 7 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index d19a4e44..ecadb0f4 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -21,6 +21,7 @@ from sklearn.model_selection import train_test_split from dataclasses import dataclass import statistics as s from sklearn.metrics import roc_auc_score + #from ann_visualizer.visualize import ann_viz; def returnColumnsInfo(dataset): dict=[] @@ -224,7 +225,7 @@ def train(dataset, params, callback): # # ###OPTIMIZATORI - + """ if(params['optimizer']=='adam'): opt=tf.keras.optimizers.Adam(learning_rate=params['learningRate']) @@ -276,7 +277,7 @@ def train(dataset, params, callback): activityreg=tf.keras.regularizers.l2(reg['activityRate']) elif(reg['kernelType']=='l1l2'): activityreg=tf.keras.regularizers.l1_l2(l1=reg['activityRate'][0],l2=reg['activityRate'][1]) - + """ if(problem_type=='multi-klasifikacioni'): #print('multi') @@ -293,17 +294,19 @@ def train(dataset, params, callback): classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) - + + hist=history.history + y_pred=classifier.predict(x_test) y_pred=np.argmax(y_pred,axis=1) - #print(y_pred.flatten()) - #print(y_test) + scores = classifier.evaluate(x_test, y_test) #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100)) classifier.save("temp/"+params['name'], save_format='h5') #vizuelizacija u python-u #from ann_visualizer.visualize import ann_viz; #ann_viz(classifier, title="My neural network") + return hist elif(problem_type=='binarni-klasifikacioni'): #print('*************************************************************************binarni') @@ -318,7 +321,7 @@ def train(dataset, params, callback): classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) - + hist=history.history y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -330,6 +333,7 @@ def train(dataset, params, callback): #ann_viz(classifier, title="My neural network") classifier.save("temp/"+params['name'], save_format='h5') + return hist elif(problem_type=='regresioni'): classifier=tf.keras.Sequential() @@ -343,9 +347,10 @@ def train(dataset, params, callback): classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics']) history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize']) + hist=history.history y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) - + return hist def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"): #creating a set of all the unique classes using the actual class list |