aboutsummaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
authorDanijel Anđelković <adanijel99@gmail.com>2022-05-05 00:29:48 +0200
committerDanijel Anđelković <adanijel99@gmail.com>2022-05-05 00:29:48 +0200
commited21703046eaef34f5dca064f991ad1858026cf8 (patch)
tree2c1852f50297b73a4ea1fbcbc3cc804a30b25fec /backend
parent2c8c3501738a3bacecbf2d4bb146cc1cc299a76c (diff)
Izbrisao console log.
Diffstat (limited to 'backend')
-rw-r--r--backend/microservice/api/newmlservice.py21
1 files changed, 7 insertions, 14 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 826ac7cb..85d8fb71 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -130,7 +130,7 @@ def returnColumnsInfo(dataset):
#print(NullRows)
#print(len(NullRows))
allNullRows=len(NullRows)
- print(cMatrix.to_json(orient='index'))
+ #print(cMatrix.to_json(orient='index'))
#json.loads()['data']
return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':json.loads(cMatrix.to_json(orient='split'))['data']}
@@ -185,7 +185,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
col=columnInfo[i]
if(columnTypes[i]=="categorical"):
data[col['columnName']]=data[col['columnName']].apply(str)
- kategorijskekolone.append(col['coumnName'])
+ kategorijskekolone.append(col['columnName'])
#kategorijskekolone=data.select_dtypes(include=['object']).columns
print(kategorijskekolone)
###NULL
@@ -367,7 +367,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
#plt.plot(hist['accuracy'])
@@ -421,14 +421,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(x_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(y_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
-
-
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -473,11 +466,11 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
- classifier.add(tf.keras.layers.Dense(units=1),activation=paramsModel['outputLayerActivationFunction'])
+ classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))
@@ -647,7 +640,7 @@ def manageH5(dataset,params,h5model):
h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
- history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize'])
+ history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=int(params['batchSize']))
y_pred2=h5model.predict(x2)