diff options
author | Danijel Anđelković <adanijel99@gmail.com> | 2022-05-05 00:29:48 +0200 |
---|---|---|
committer | Danijel Anđelković <adanijel99@gmail.com> | 2022-05-05 00:29:48 +0200 |
commit | ed21703046eaef34f5dca064f991ad1858026cf8 (patch) | |
tree | 2c1852f50297b73a4ea1fbcbc3cc804a30b25fec /backend | |
parent | 2c8c3501738a3bacecbf2d4bb146cc1cc299a76c (diff) |
Izbrisao console log.
Diffstat (limited to 'backend')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 21 |
1 files changed, 7 insertions, 14 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 826ac7cb..85d8fb71 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -130,7 +130,7 @@ def returnColumnsInfo(dataset): #print(NullRows) #print(len(NullRows)) allNullRows=len(NullRows) - print(cMatrix.to_json(orient='index')) + #print(cMatrix.to_json(orient='index')) #json.loads()['data'] return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':json.loads(cMatrix.to_json(orient='split'))['data']} @@ -185,7 +185,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): col=columnInfo[i] if(columnTypes[i]=="categorical"): data[col['columnName']]=data[col['columnName']].apply(str) - kategorijskekolone.append(col['coumnName']) + kategorijskekolone.append(col['columnName']) #kategorijskekolone=data.select_dtypes(include=['object']).columns print(kategorijskekolone) ###NULL @@ -367,7 +367,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history #plt.plot(hist['accuracy']) @@ -421,14 +421,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') - print(x_train) - print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') - print(y_train) - print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') - - - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -473,11 +466,11 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj - classifier.add(tf.keras.layers.Dense(units=1),activation=paramsModel['outputLayerActivationFunction']) + classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction'])) classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) @@ -647,7 +640,7 @@ def manageH5(dataset,params,h5model): h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics']) - history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize']) + history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=int(params['batchSize'])) y_pred2=h5model.predict(x2) |