diff options
author | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-05-04 18:53:37 +0200 |
---|---|---|
committer | TAMARA JERINIC <tamara.jerinic@gmail.com> | 2022-05-04 18:53:37 +0200 |
commit | f9a8a24387cefc4b713d3f375e75773751894015 (patch) | |
tree | f24b767d93a5aaf834afe81074a11d18e179d8a9 /backend | |
parent | 87ac1232664b577fcd5d393226522a27ef11e7df (diff) |
Dodato parsiranje BatchSize parametra.
Diffstat (limited to 'backend')
-rw-r--r-- | backend/microservice/api/newmlservice.py | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index 3244e82f..9e26b03a 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -349,7 +349,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history #plt.plot(hist['accuracy']) @@ -403,7 +403,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -452,7 +452,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics']) - history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id'])) + history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id'])) hist=history.history y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) |