diff options
author | Danijel Anđelković <adanijel99@gmail.com> | 2022-05-20 04:02:03 +0200 |
---|---|---|
committer | Danijel Anđelković <adanijel99@gmail.com> | 2022-05-20 04:02:03 +0200 |
commit | 0d476fb3a73921bbea0994509bc95a19cebae70c (patch) | |
tree | a1f2071655b4bd2d78f46c7bb0424a08985664b8 /frontend/src/app/_data/Model.ts | |
parent | 60d486a636230074350ac19900125098fd07f3f7 (diff) | |
parent | 9930bdb624f9511e9f4ead7abd435d25fbdcac4a (diff) |
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar
Diffstat (limited to 'frontend/src/app/_data/Model.ts')
-rw-r--r-- | frontend/src/app/_data/Model.ts | 19 |
1 files changed, 10 insertions, 9 deletions
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts index cc25c91b..898805d3 100644 --- a/frontend/src/app/_data/Model.ts +++ b/frontend/src/app/_data/Model.ts @@ -2,6 +2,7 @@ import { NgIf } from "@angular/common"; import { FolderFile } from "./FolderFile"; export default class Model extends FolderFile { + public lossFunction: LossFunction; constructor( name: string = 'Novi model', public description: string = '', @@ -12,7 +13,6 @@ export default class Model extends FolderFile { // Neural net training settings public type: ProblemType = ProblemType.Regression, public optimizer: Optimizer = Optimizer.Adam, - public lossFunction: LossFunction = LossFunctionRegression[0], public inputNeurons: number = 1, public hiddenLayers: number = 1, public batchSize: BatchSize = BatchSize.O3, @@ -21,18 +21,19 @@ export default class Model extends FolderFile { public metrics: string[] = [], // TODO add to add-model form public epochs: number = 5, // TODO add to add-model form public inputColNum: number = 5, - public learningRate: LearningRate = LearningRate.LR1, + public learningRate: LearningRate = LearningRate.LR3, public layers: Layer[] = [new Layer()], // Test set settings public randomOrder: boolean = true, public randomTestSet: boolean = true, public randomTestSetDistribution: number = 0.1, //0.1-0.9 (10% - 90%) JESTE OVDE ZAKUCANO 10, AL POSLATO JE KAO 0.1 BACK-U - + public validationSize: number = 0.1, public isPublic: boolean = false, public accessibleByLink: boolean = false ) { super(name, dateCreated, lastUpdated); + this.lossFunction = (this.type == ProblemType.Regression ? LossFunctionRegression[0] : (this.type == ProblemType.BinaryClassification ? LossFunctionBinaryClassification[0] : LossFunctionMultiClassification[0])); } } export class Layer { @@ -45,8 +46,8 @@ export class Layer { ) { } } export enum LearningRate { - LR1 = '0.00001', - LR2 = '0.0001', + // LR1 = '0.00001', + // LR2 = '0.0001', LR3 = '0.001', LR4 = '0.003', LR5 = '0.01', @@ -117,10 +118,10 @@ export enum ActivationFunctionOutputLayer export enum LossFunction { // binary classification loss functions BinaryCrossEntropy = 'binary_crossentropy', - SquaredHingeLoss = 'squared_hinge_loss', - HingeLoss = 'hinge_loss', + SquaredHingeLoss = 'squared_hinge', + HingeLoss = 'hinge', // multi-class classification loss functions - CategoricalCrossEntropy = 'categorical_crossentropy', + // CategoricalCrossEntropy = 'categorical_crossentropy', SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy', KLDivergence = 'kullback_leibler_divergence', @@ -134,7 +135,7 @@ export enum LossFunction { export const LossFunctionRegression = [LossFunction.MeanAbsoluteError, LossFunction.MeanSquaredError, LossFunction.MeanSquaredLogarithmicError] export const LossFunctionBinaryClassification = [LossFunction.BinaryCrossEntropy, LossFunction.SquaredHingeLoss, LossFunction.HingeLoss] -export const LossFunctionMultiClassification = [LossFunction.CategoricalCrossEntropy, LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence] +export const LossFunctionMultiClassification = [/*LossFunction.CategoricalCrossEntropy,*/ LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence] export enum Optimizer { Adam = 'Adam', |