diff options
Diffstat (limited to 'backend/microservice/api/controller.py')
-rw-r--r-- | backend/microservice/api/controller.py | 19 |
1 files changed, 13 insertions, 6 deletions
diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py index 4d9f8f2a..08f953a6 100644 --- a/backend/microservice/api/controller.py +++ b/backend/microservice/api/controller.py @@ -1,10 +1,11 @@ import flask from flask import request, jsonify -import ml_socket import newmlservice import tensorflow as tf import pandas as pd import json +import requests +import config app = flask.Flask(__name__) app.config["DEBUG"] = True @@ -17,16 +18,22 @@ class train_callback(tf.keras.callbacks.Callback): # def on_epoch_end(self, epoch, logs=None): print(epoch) - ml_socket.send(epoch) + #ml_socket.send(epoch) + #file = request.files.get("file") + url = config.api_url + "/Model/epoch" + requests.post(url, epoch).text #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default @app.route('/train', methods = ['POST']) def train(): print("******************************TRAIN*************************************************") - f = request.json["dataset"] - dataset = pd.read_csv(f) - # - result = newmlservice.train(dataset, request.json["model"], train_callback) + f = request.files.get("file") + data = pd.read_csv(f) + paramsModel = json.loads(request.form["model"]) + paramsExperiment = json.loads(request.form["experiment"]) + paramsDataset = json.loads(request.form["dataset"]) + #dataset, paramsModel, paramsExperiment, callback) + result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback) print(result) return jsonify(result) |