aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/newmlservice.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/newmlservice.py')
-rw-r--r--backend/microservice/api/newmlservice.py24
1 files changed, 13 insertions, 11 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 6cbda69c..6e65c876 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -129,7 +129,8 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
###NULL
null_value_options = paramsExperiment["nullValues"]
null_values_replacers = paramsExperiment["nullValuesReplacers"]
-
+ kategorijskekolone=data.select_dtypes(include=['object']).columns.copy()
+ #print(kategorijskekolone)
if(null_value_options=='replace'):
#print("replace null") #
dict=null_values_replacers
@@ -143,11 +144,18 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
val = np.int64(val)
elif(data[col].dtype == 'float64'):
val = np.float64(val)
- #elif(data[col].dtype == 'object'):
data[col]=data[col].fillna(val)
elif(null_value_options=='delete_rows'):
data=data.dropna()
elif(null_value_options=='delete_columns'):
+ if(data[output_column].isnull().sum()>0):
+ if(output_column in kategorijskekolone):
+ replace=data[output_column].value_counts().index[0]
+ #print(replace)
+ else:
+ replace=data[output_column].mean()
+ data[output_column]=data[output_column].fillna(replace)
+ #print(data[output_column].isnull().sum())
data=data.dropna(axis=1)
#print(data.shape)
@@ -175,7 +183,8 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
encodings=paramsExperiment["encodings"]
datafront=dataset.copy()
svekolone=datafront.columns
- kategorijskekolone=datafront.select_dtypes(include=['object']).columns
+
+
for kolonaEncoding in encodings:
kolona = kolonaEncoding["columnName"]
@@ -237,13 +246,6 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
#print(x_columns)
x = data[x_columns].values
y = data[output_column].values
- print('-----------------dfghfhgfhfg-------------------------------')
- print(x)
- print('-----------------dfghfhgfhfg-------------------------------')
- print(y)
- print('-----------------dfghfhgfhfg-------------------------------')
- print(output_column)
- print('-----------------dfghfhgfhfg-------------------------------')
#
# Podela na test i trening skupove
@@ -360,7 +362,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['hiddenLayerNeurons'], activation=paramsModel['hiddenLayerActivationFunctions'][i+1]))#i-ti skriveni sloj
classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = paramsModel['optimizer'] , metrics =['accuracy'])
history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history