aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/newmlservice.py
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice/api/newmlservice.py')
-rw-r--r--backend/microservice/api/newmlservice.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 85d8fb71..2f08d4b4 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -183,7 +183,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
columnTypes=paramsExperiment['columnTypes']
for i in range(len(columnInfo)):
col=columnInfo[i]
- if(columnTypes[i]=="categorical"):
+ if(columnTypes[i]=="categorical" and col['columnName'] in paramsExperiment['inputColumns']):
data[col['columnName']]=data[col['columnName']].apply(str)
kategorijskekolone.append(col['columnName'])
#kategorijskekolone=data.select_dtypes(include=['object']).columns
@@ -365,7 +365,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics = ['accuracy','mae','mse'])
history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
@@ -419,7 +419,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
@@ -468,7 +468,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
@@ -638,7 +638,7 @@ def manageH5(dataset,params,h5model):
h5model.summary()
#ann_viz(h5model, title="My neural network")
- h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
+ h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics = ['accuracy','mae','mse'])
history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=int(params['batchSize']))