aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/newmlservice.py7
1 files changed, 4 insertions, 3 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 6a863013..f374e9d2 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -291,11 +291,12 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
random=123
else:
random=0
+
+
#x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
#print(x_train,x_test)
x, x_test, y, y_test = train_test_split(x, y, test_size=test, random_state=random, shuffle=True)
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.15, shuffle=True)
- #
# Treniranje modela
#
#
@@ -507,9 +508,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
- classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
+ classifier.add(tf.keras.layers.Dense(units=1))
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['mae','mse','rmse'])
history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val))
hist=history.history