aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice
diff options
context:
space:
mode:
Diffstat (limited to 'backend/microservice')
-rw-r--r--backend/microservice/api/newmlservice.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index 3244e82f..9e26b03a 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -349,7 +349,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
#plt.plot(hist['accuracy'])
@@ -403,7 +403,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -452,7 +452,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=paramsModel['batchSize'],callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))