diff options
Diffstat (limited to 'backend')
-rw-r--r-- | backend/api/api/Controllers/DatasetController.cs | 20 | ||||
-rw-r--r-- | backend/api/api/Controllers/ModelController.cs | 40 | ||||
-rw-r--r-- | backend/api/api/Models/Model.cs | 6 | ||||
-rw-r--r-- | backend/api/api/Models/Predictor.cs | 47 | ||||
-rw-r--r-- | backend/api/api/Program.cs | 2 | ||||
-rw-r--r-- | backend/api/api/Services/DatasetService.cs | 12 | ||||
-rw-r--r-- | backend/api/api/Services/FillAnEmptyDb.cs | 13 | ||||
-rw-r--r-- | backend/api/api/Services/MlConnectionService.cs | 13 | ||||
-rw-r--r-- | backend/api/api/appsettings.json | 10 | ||||
-rw-r--r-- | backend/microservice/api/controller.py | 35 | ||||
-rw-r--r-- | backend/microservice/api/newmlservice.py | 75 |
11 files changed, 134 insertions, 139 deletions
diff --git a/backend/api/api/Controllers/DatasetController.cs b/backend/api/api/Controllers/DatasetController.cs index e4741412..849d9884 100644 --- a/backend/api/api/Controllers/DatasetController.cs +++ b/backend/api/api/Controllers/DatasetController.cs @@ -144,7 +144,6 @@ namespace api.Controllers [Authorize(Roles = "User,Guest")] public async Task<ActionResult<Dataset>> Post([FromBody] Dataset dataset) { - Console.WriteLine("PROBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"); string uploaderId = getUserId(); dataset.uploaderId = uploaderId; @@ -196,7 +195,7 @@ namespace api.Controllers string ext = ".csv"; - //nesto + //Check Directory if (!Directory.Exists(folderPath)) @@ -279,19 +278,4 @@ namespace api.Controllers } } -} - -/* -{ - "_id": "", - "name": "name", - "description": "description", - "header" : ["ag","rt"], - "fileId" : "652", - "extension": "csb", - "isPublic" : true, - "accessibleByLink": true, - "dateCreated": "dateCreated", - "lastUpdated" : "proba12" -} -*/
\ No newline at end of file +}
\ No newline at end of file diff --git a/backend/api/api/Controllers/ModelController.cs b/backend/api/api/Controllers/ModelController.cs index 39eb7830..be30ae6f 100644 --- a/backend/api/api/Controllers/ModelController.cs +++ b/backend/api/api/Controllers/ModelController.cs @@ -211,6 +211,8 @@ namespace api.Controllers return BadRequest("Bad parameters!");*/ model.uploaderId = getUserId(); + model.dateCreated = DateTime.Now; + model.lastUpdated = DateTime.Now; var existingModel = _modelService.GetOneModel(model.uploaderId, model.name); @@ -232,6 +234,44 @@ namespace api.Controllers } } + // POST api/<ModelController>/stealModel + [HttpPost("stealModel")] + [Authorize(Roles = "User,Guest")] + public ActionResult<Model> StealModel([FromBody] Model model)//, bool overwrite) + { + bool overwrite = false; + //username="" ako je GUEST + //Experiment e = _experimentService.Get(model.experimentId); umesto 1 ide e.inputColumns.Length TODO!!!!!!!!!!!!!!!!! + //model.inputNeurons = e.inputColumns.Length; + /*if (_modelService.CheckHyperparameters(1, model.hiddenLayerNeurons, model.hiddenLayers, model.outputNeurons) == false) + return BadRequest("Bad parameters!");*/ + + model.uploaderId = getUserId(); + model._id = ""; + model.dateCreated = DateTime.Now; + model.lastUpdated = DateTime.Now; + model.isPublic = false; + + var existingModel = _modelService.GetOneModel(model.uploaderId, model.name); + + + if (existingModel != null && !overwrite && model.validationSize < 1 && model.validationSize > 0) + return NotFound($"Model already exisits or validation size is not between 0-1"); + else + { + //_modelService.Create(model); + //return Ok(); + if (existingModel == null) + _modelService.Create(model); + else + { + _modelService.Replace(model); + } + + return CreatedAtAction(nameof(Get), new { id = model._id }, model); + } + } + // PUT api/<ModelController>/{name} [HttpPut("{name}")] [Authorize(Roles = "User,Guest")] diff --git a/backend/api/api/Models/Model.cs b/backend/api/api/Models/Model.cs index a807316f..bbbf201e 100644 --- a/backend/api/api/Models/Model.cs +++ b/backend/api/api/Models/Model.cs @@ -14,18 +14,14 @@ namespace api.Models public string name { get; set; } public string description { get; set; } - //datetime public DateTime dateCreated { get; set; } public DateTime lastUpdated { get; set; } - //proveriti id - //public string experimentId { get; set; } //Neural net training public string type { get; set; } public string optimizer { get; set; } public string lossFunction { get; set; } - //public int inputNeurons { get; set; } public int hiddenLayers { get; set; } public string batchSize { get; set; } public string learningRate { get; set; } @@ -36,8 +32,6 @@ namespace api.Models public string[] metrics { get; set; } public int epochs { get; set; } - //public bool isTrained { get; set; } - //public NullValues[] nullValues { get; set; } public bool randomOrder { get; set; } public bool randomTestSet { get; set; } public float randomTestSetDistribution { get; set; } diff --git a/backend/api/api/Models/Predictor.cs b/backend/api/api/Models/Predictor.cs index 530257b2..5a7b5eda 100644 --- a/backend/api/api/Models/Predictor.cs +++ b/backend/api/api/Models/Predictor.cs @@ -18,38 +18,25 @@ namespace api.Models public string experimentId { get; set; } public string modelId { get; set; } public string h5FileId { get; set; } - public Metric[] metrics { get; set; } - public Metric[] finalMetrics { get; set; } - } - public class Metric + //public Metric[] metrics { get; set; } + + public float[] metricsLoss { get; set; } + public float[] metricsValLoss { get; set; } + public float[] metricsAcc { get; set; } + public float[] metricsValAcc { get; set; } + public float[] metricsMae { get; set; } + public float[] metricsValMae { get; set; } + public float[] metricsMse { get; set; } + public float[] metricsValMse { get; set; } + //public Metric[] finalMetrics { get; set; } + } + + /*public class Metric { string Name { get; set; } string JsonValue { get; set; } - } - -} - -/** -* Paste one or more documents here - -{ - "_id": { - "$oid": "625dc348b7856ace8a6f8702" - - }, - "uploaderId" : "6242ea59486c664208d4255c", - "inputs": ["proba", - "proba2", - "proba3" - ], - "output" : "izlaz", - "isPublic" : true, - "accessibleByLink" : true, - "dateCreated" : "2022-04-11T20:33:26.937+00:00", - "experimentId" : "Neki id eksperimenta", - "modelId" : "Neki id eksperimenta", - "h5FileId" : "Neki id eksperimenta", - "metrics" : [{ }] -}*/
\ No newline at end of file + }*/ + +}
\ No newline at end of file diff --git a/backend/api/api/Program.cs b/backend/api/api/Program.cs index cf64d58d..5977e843 100644 --- a/backend/api/api/Program.cs +++ b/backend/api/api/Program.cs @@ -37,7 +37,7 @@ builder.Services.AddScoped<IFileService, FileService>(); builder.Services.AddScoped<IJwtToken, JwtToken>(); builder.Services.AddScoped<IExperimentService, ExperimentService>(); builder.Services.AddHostedService<TempFileService>(); -builder.Services.AddHostedService<FillAnEmptyDb>(); +//builder.Services.AddHostedService<FillAnEmptyDb>(); //Ml Api Ip Filter builder.Services.AddScoped<MlApiCheckActionFilter>(container => diff --git a/backend/api/api/Services/DatasetService.cs b/backend/api/api/Services/DatasetService.cs index f38a363b..0b84721e 100644 --- a/backend/api/api/Services/DatasetService.cs +++ b/backend/api/api/Services/DatasetService.cs @@ -104,16 +104,6 @@ namespace api.Services return dataset._id; } - /* -public bool CheckDb() -{ - Dataset? dataset = null; - dataset = _dataset.Find(dataset => dataset.username == "igrannonica").FirstOrDefault(); - - if (dataset != null) - return false; - else - return true; -}*/ + } } diff --git a/backend/api/api/Services/FillAnEmptyDb.cs b/backend/api/api/Services/FillAnEmptyDb.cs index 811e723a..cd35dc78 100644 --- a/backend/api/api/Services/FillAnEmptyDb.cs +++ b/backend/api/api/Services/FillAnEmptyDb.cs @@ -54,7 +54,7 @@ namespace api.Services dataset._id = ""; dataset.uploaderId = "000000000000000000000000"; - dataset.name = "Titanik dataset(public)"; + dataset.name = "Titanik dataset (public)"; dataset.description = "Titanik dataset"; dataset.fileId = _fileService.GetFileId(fullPath); dataset.extension = ".csv"; @@ -277,6 +277,7 @@ namespace api.Services model.lossFunction = "sparse_categorical_crossentropy"; model.hiddenLayers = 5; model.batchSize = "64"; + model.learningRate = "1"; model.outputNeurons = 0; model.layers = new[] { @@ -368,7 +369,7 @@ namespace api.Services dataset._id = ""; dataset.uploaderId = "000000000000000000000000"; dataset.name = "IMDB-Movie-Data Dataset (public)"; - dataset.description = "IMDB-Movie-Data Dataset(public)"; + dataset.description = "IMDB-Movie-Data Dataset (public)"; dataset.fileId = _fileService.GetFileId(fullPath); dataset.extension = ".csv"; dataset.isPublic = true; @@ -421,8 +422,8 @@ namespace api.Services model._id = ""; model.uploaderId = "000000000000000000000000"; - model.name = "IMDB model"; - model.description = "IMDB model"; + model.name = "IMDB model (public)"; + model.description = "IMDB model (public)"; model.dateCreated = DateTime.Now; model.lastUpdated = DateTime.Now; model.type = "regresioni"; @@ -579,8 +580,8 @@ namespace api.Services model._id = ""; model.uploaderId = "000000000000000000000000"; - model.name = "Churn model"; - model.description = "Churn model"; + model.name = "Churn model (public)"; + model.description = "Churn model (public)"; model.dateCreated = DateTime.Now; model.lastUpdated = DateTime.Now; model.type = "binarni-klasifikacioni"; diff --git a/backend/api/api/Services/MlConnectionService.cs b/backend/api/api/Services/MlConnectionService.cs index 0ecdb1af..6a307e0d 100644 --- a/backend/api/api/Services/MlConnectionService.cs +++ b/backend/api/api/Services/MlConnectionService.cs @@ -63,19 +63,6 @@ namespace api.Services foreach (var connection in ChatHub.getAllConnectionsOfUser(id)) await _ichat.Clients.Client(connection).SendAsync("NotifyDataset",newDataset.name,newDataset._id); - - string proba = ""; - - for (int i = 0; i < newDataset.cMatrix.Length; i++) - { - proba = i +" "; - for (int j = 0; j < newDataset.cMatrix[i].Length; j++) - proba += newDataset.cMatrix[i][j] + "f, "; - - Console.WriteLine(proba); - proba = ""; - } - return; } diff --git a/backend/api/api/appsettings.json b/backend/api/api/appsettings.json index 44d63ac3..b502efeb 100644 --- a/backend/api/api/appsettings.json +++ b/backend/api/api/appsettings.json @@ -16,22 +16,26 @@ "UserStoreDatabaseSettings": { /* LocalHost*/ - /*"ConnectionString": "mongodb://127.0.0.1:27017/", + "ConnectionString": "mongodb://127.0.0.1:27017/", "DatabaseName": "si_project", "CollectionName": "users", "DatasetCollectionName": "Dataset", "ModelCollectionName": "Model", "PredictorCollectionName": "Predictor", "FilesCollectionName": "Files", - "ExperimentCollectionName": "Experiment"*/ + "ExperimentCollectionName": "Experiment" + /* "ConnectionString": "mongodb+srv://si_user:si_user@sidatabase.twtfm.mongodb.net/myFirstDatabase?retryWrites=true&w=majority", + + "ConnectionString": "mongodb+srv://si_user:si_user@sidatabase.twtfm.mongodb.net/myFirstDatabase?retryWrites=true&w=majority", + 529394dd526811e059dfb5f8f76597ffd90b2fea "DatabaseName": "si_db", "CollectionName": "users", "DatasetCollectionName": "Dataset", "ModelCollectionName": "Model", "PredictorCollectionName": "Predictor", "FilesCollectionName": "Files", - "ExperimentCollectionName": "Experiment" + "ExperimentCollectionName": "Experiment" */ } }
\ No newline at end of file diff --git a/backend/microservice/api/controller.py b/backend/microservice/api/controller.py index 7852b63d..c82634a2 100644 --- a/backend/microservice/api/controller.py +++ b/backend/microservice/api/controller.py @@ -69,22 +69,30 @@ def train(): #dataset, paramsModel, paramsExperiment, callback) - filepath,result,finalMetrics= newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback) + filepath,histMetrics= newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback) """ f = request.json['filepath'] dataset = pd.read_csv(f) filepath,result=newmlservice.train(dataset,request.json['model'],train_callback) print(result) """ - - + #m = [] + #for attribute, value in result.items(): + #m.append(histMetrics(attribute,str(value)).__dict__) + ''' + m = [] + for attribute, value in result.items(): + m.append({"Name" : attribute, "JsonValue" : value})) + + print("**************************************************************") + print(m) + + print("**************************************************************") + ''' url = config.api_url + "/file/h5" files = {'file': open(filepath, 'rb')} r=requests.post(url, files=files,data={"uploaderId":paramsExperiment['uploaderId']}) fileId=r.text - m = [] - for attribute, value in result.items(): - m.append({"Name" : attribute, "JsonValue" : value}) predictor = { "_id" : "", "uploaderId" : paramsModel["uploaderId"], @@ -95,14 +103,21 @@ def train(): "experimentId" : paramsExperiment["_id"], "modelId" : paramsModel["_id"], "h5FileId" : fileId, - "metrics" : m, - "finalMetrics":finalMetrics - + "metricsLoss":histMetrics[0], + "metricsValLoss":histMetrics[1], + "metricsAcc":histMetrics[2], + "metricsValAcc":histMetrics[3], + "metricsMae":histMetrics[4], + "metricsValMae":histMetrics[5], + "metricsMse":histMetrics[6], + "metricsValMse":histMetrics[7] } #print(predictor) + url = config.api_url + "/Predictor/add" r = requests.post(url, json=predictor).text - print(r) + + #print(r) return r @app.route('/predict', methods = ['POST']) diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py index fd21f8ce..85be0c2f 100644 --- a/backend/microservice/api/newmlservice.py +++ b/backend/microservice/api/newmlservice.py @@ -303,7 +303,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): ###OPTIMIZATORI print(paramsModel['optimizer']) if(paramsModel['optimizer']=='Adam'): - opt=tf.keras.optimizers.Adam(learning_rate=3) + opt=tf.keras.optimizers.Adam(learning_rate=float(paramsModel['learningRate'])) elif(paramsModel['optimizer']=='Adadelta'): opt=tf.keras.optimizers.Adadelta(learning_rate=float(paramsModel['learningRate'])) @@ -370,7 +370,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): - classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['mae','mse']) + classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['accuracy','mae','mse']) history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val)) @@ -383,9 +383,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): scores = classifier.evaluate(x_test, y_test) #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100)) - + ''' classifier.save(filepath, save_format='h5') - metrics={} + macro_averaged_precision=sm.precision_score(y_test, y_pred, average = 'macro') micro_averaged_precision=sm.precision_score(y_test, y_pred, average = 'micro') macro_averaged_recall=sm.recall_score(y_test, y_pred, average = 'macro') @@ -393,20 +393,20 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): macro_averaged_f1=sm.f1_score(y_test, y_pred, average = 'macro') micro_averaged_f1=sm.f1_score(y_test, y_pred, average = 'micro') - metrics= { - "macro_averaged_precision" :float(macro_averaged_precision), - "micro_averaged_precision" : float(micro_averaged_precision), - "macro_averaged_recall" : float(macro_averaged_recall), - "micro_averaged_recall" : float(micro_averaged_recall), - "macro_averaged_f1" : float(macro_averaged_f1), - "micro_averaged_f1" : float(micro_averaged_f1) - } - + metrics= [ + {"Name":"macro_averaged_precision", "JsonValue":str(macro_averaged_precision)}, + {"Name":"micro_averaged_precision" ,"JsonValue":str(micro_averaged_precision)}, + {"Name":"macro_averaged_recall", "JsonValue":str(macro_averaged_recall)}, + {"Name":"micro_averaged_recall" ,"JsonValue":str(micro_averaged_recall)}, + {"Name":"macro_averaged_f1","JsonValue": str(macro_averaged_f1)}, + {"Name":"micro_averaged_f1", "JsonValue": str(micro_averaged_f1)} + ] + ''' #vizuelizacija u python-u #from ann_visualizer.visualize import ann_viz; #ann_viz(classifier, title="My neural network") - return filepath,hist,metrics + return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],hist['mae'],hist['val_mae'],hist['mse'],hist['val_mse']] elif(problem_type=='binarni-klasifikacioni'): #print('*************************************************************************binarni') @@ -444,6 +444,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val)) hist=history.history + y_pred=classifier.predict(x_test) y_pred=(y_pred>=0.5).astype('int') @@ -452,7 +453,7 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): # ann_viz(classifier, title="My neural network") classifier.save(filepath, save_format='h5') - + """ accuracy = float(sm.accuracy_score(y_test,y_pred)) precision = float(sm.precision_score(y_test,y_pred)) recall = float(sm.recall_score(y_test,y_pred)) @@ -461,22 +462,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): f1 = float(sm.f1_score(y_test,y_pred)) fpr, tpr, _ = sm.roc_curve(y_test,y_pred) logloss = float(sm.log_loss(y_test, y_pred)) - metrics= { - "accuracy" : accuracy, - "precision" : precision, - "recall" : recall, - "specificity" : specificity, - "f1" : f1, - "tn" : float(tn), - "fp" : float(fp), - "fn" : float(fn), - "tp" : float(tp), - "fpr" : fpr.tolist(), - "tpr" : tpr.tolist(), - "logloss" : logloss - } + """ - return filepath,hist,metrics + return filepath,[hist['loss'],hist['val_loss'],hist['accuracy'],hist['val_accuracy'],hist['mae'],hist['val_mae'],hist['mse'],hist['val_mse']] elif(problem_type=='regresioni'): reg=paramsModel['layers'][0]['regularisation'] @@ -514,13 +502,15 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): history=classifier.fit( x=x_train, y=y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']),validation_data=(x_val, y_val)) hist=history.history + y_pred=classifier.predict(x_test) #print(classifier.evaluate(x_test, y_test)) classifier.save(filepath, save_format='h5') - + ''' mse = float(sm.mean_squared_error(y_test,y_pred)) + mae = float(sm.mean_absolute_error(y_test,y_pred)) mape = float(sm.mean_absolute_percentage_error(y_test,y_pred)) rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred))) @@ -531,16 +521,19 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback): n = 40 k = 2 adj_r2 = float(1 - ((1-r2)*(n-1)/(n-k-1))) - metrics= {"mse" : mse, - "mae" : mae, - "mape" : mape, - "rmse" : rmse, - "rmsle" : rmsle, - "r2" : r2, - "adj_r2" : adj_r2 - } - - return filepath,hist,metrics + + metrics= [ + {"Name":"mse","JsonValue":str(mse)}, + + {"Name":"mae","JsonValue":str(mae)}, + {"Name":"mape","JsonValue":str( mape)}, + {"Name":"rmse","JsonValue":str(rmse)}, + {"Name":"rmsle","JsonValue":str(rmsle)}, + {"Name":"r2","JsonValue":str( r2)}, + {"Name":"adj_r2","JsonValue":str(adj_r2)} + ] + ''' + return filepath,[hist['loss'],hist['val_loss'],[],[],hist['mae'],hist['val_mae'],hist['mse'],hist['val_mse']] def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"): |