aboutsummaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
Diffstat (limited to 'backend')
-rw-r--r--backend/microservice/api/ml_service.py128
1 files changed, 117 insertions, 11 deletions
diff --git a/backend/microservice/api/ml_service.py b/backend/microservice/api/ml_service.py
index 73b191da..0aed3dc9 100644
--- a/backend/microservice/api/ml_service.py
+++ b/backend/microservice/api/ml_service.py
@@ -34,21 +34,27 @@ def returnColumnsInfo(dataset):
uniquevalues=datafront[kolona].unique()
mean=0
median=0
+ min=0
+ max=0
nullCount=datafront[kolona].isnull().sum()
if(nullCount>0):
allNullCols=allNullCols+1
frontreturn={'columnName':kolona,
'isNumber':False,
'uniqueValues':uniquevalues.tolist(),
- 'median':float(mean),
- 'mean':float(median),
- 'numNulls':float(nullCount)
+ 'mean':float(mean),
+ 'median':float(median),
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
}
dict.append(frontreturn)
else:
mean=datafront[kolona].mean()
median=s.median(datafront[kolona])
nullCount=datafront[kolona].isnull().sum()
+ min=min(datafront[kolona])
+ max=max(datafront[kolona])
if(nullCount>0):
allNullCols=allNullCols+1
frontreturn={'columnName':kolona,
@@ -56,7 +62,9 @@ def returnColumnsInfo(dataset):
'uniqueValues':[],
'mean':float(mean),
'median':float(median),
- 'numNulls':float(nullCount)
+ 'numNulls':float(nullCount),
+ 'min':min,
+ 'max':max
}
dict.append(frontreturn)
NullRows = datafront[datafront.isnull().any(axis=1)]
@@ -98,6 +106,8 @@ def train(dataset, params, callback):
data = pd.DataFrame()
for col in params["inputColumns"]:
data[col]=dataset[col]
+
+ print(data.head())
output_column = params["columnToPredict"]
data[output_column] = dataset[output_column]
#
@@ -177,6 +187,8 @@ def train(dataset, params, callback):
x_columns.append(col)
x = data[x_columns].values
y = data[output_column].values
+ print(x_columns)
+ print(x)
#
# Podela na test i trening skupove
#
@@ -186,7 +198,7 @@ def train(dataset, params, callback):
random=123
else:
random=0
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, shuffle=params["shuffle"], random_state=random)
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,random_state=0)
#
# Skaliranje vrednosti
#
@@ -212,17 +224,21 @@ def train(dataset, params, callback):
batch_size = params["batchSize"]
epochs = params["epochs"]
inputDim = len(data.columns) - 1
-
+ '''
classifier=tf.keras.Sequential()
-
+
classifier.add(tf.keras.layers.Dense(units=len(data.columns),input_dim=inputDim))#input layer
for f in func:#hidden layers
- classifier.add(tf.keras.layers.Dense(units=hidden_layer_neurons,activation=f))
+ classifier.add(tf.keras.layers.Dense(hidden_layer_neurons,activation=f))
numberofclasses=len(output_column.unique())
- classifier.add(tf.keras.layers.Dense(units=numberofclasses,activation=output_func))#output layer
-
+ classifier.add(tf.keras.layers.Dense(numberofclasses,activation=output_func))#output layer
+ '''
+ model=tf.keras.Sequential()
+ model.add(tf.keras.layers.Dense(1,input_dim=x_train.shape[1]))#input layer
+ model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
+ model.add(tf.keras.layers.Dense(len(output_column.unique())+1, activation='softmax'))
classifier.compile(optimizer=optimizer, loss=loss_func,metrics=metrics)
history=classifier.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callback(x_test, y_test))
@@ -348,4 +364,94 @@ def train(dataset, params, callback):
# TODO upload trenirani model nazad na backend
- #return TrainingResult(metrics) \ No newline at end of file
+ #return TrainingResult(metrics)
+
+
+def manageH5(datain,params,h5model):
+ dataset=datain.copy()
+ problem_type = params["type"]
+ data = pd.DataFrame()
+ for col in params["inputColumns"]:
+ data[col]=dataset[col]
+ output_column = params["columnToPredict"]
+ data[output_column] = dataset[output_column]
+ #
+ # Brisanje null kolona / redova / zamena
+ #nullreplace=[
+ # {"column":"Embarked","value":"C","deleteRow":false,"deleteCol":true},
+ # {"column": "Cabin","value":"C123","deleteRow":"0","deleteCol":"0"}]
+
+ null_value_options = params["nullValues"]
+ null_values_replacers = params["nullValuesReplacers"]
+
+ if(null_value_options=='replace'):
+ print("replace null") # TODO
+ elif(null_value_options=='delete_rows'):
+ data=data.dropna()
+ elif(null_value_options=='delete_columns'):
+ data=data.dropna()
+ #
+ #print(data.isnull().any())
+ #
+ # Brisanje kolona koje ne uticu na rezultat
+ #
+ num_rows=data.shape[0]
+ for col in data.columns:
+ if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
+ data.pop(col)
+ #
+ # Enkodiranje
+ # https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
+ #
+ encoding=params["encoding"]
+ if(encoding=='label'):
+ encoder=LabelEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+ elif(encoding=='onehot'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)
+ elif(encoding=='ordinal'):
+ encoder = OrdinalEncoder()
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ data[col]=encoder.fit_transform(data[col])
+
+ elif(encoding=='hashing'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
+ encoder.fit_transform(data)
+ elif(encoding=='binary'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
+ encoder.fit_transform(data)
+
+ elif(encoding=='baseN'):
+ category_columns=[]
+ for col in data.columns:
+ if(data[col].dtype==np.object_):
+ category_columns.append(col)
+ encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
+ encoder.fit_transform(data)
+ #
+ # Input - output
+ #
+ x_columns = []
+ for col in data.columns:
+ if(col!=output_column):
+ x_columns.append(col)
+ x = data[x_columns].values
+ y = data[output_column].values
+
+
+ y_pred=h5model.predict_classes(x) \ No newline at end of file