aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_data/Model.ts
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_data/Model.ts')
-rw-r--r--frontend/src/app/_data/Model.ts29
1 files changed, 27 insertions, 2 deletions
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index 094378f3..a3b86bdf 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -21,7 +21,7 @@ export default class Model {
public metrics: string[] = [], // TODO add to add-model form
public epochs: number = 5, // TODO add to add-model form
public inputColNum:number=5,
- public learningRate:number=0.01,
+ public learningRate:LearningRate=LearningRate.LR1,
public layers:Layer[]=[new Layer()]
) { }
@@ -32,16 +32,41 @@ export class Layer{
public activationFunction:ActivationFunction=ActivationFunction.Sigmoid,
public neurons:number=1,
public regularisation:Regularisation=Regularisation.L1,
- public regularisationRate:number=0.01
+ public regularisationRate:RegularisationRate=RegularisationRate.RR1,
)
{}
}
+export enum LearningRate{
+ LR1='0.00001',
+ LR2='0.0001',
+ LR3='0.001',
+ LR4='0.003',
+ LR5='0.01',
+ LR6='0.03',
+ LR7='0.1',
+ LR8='0.3',
+ LR9='1',
+ LR10='3',
+ LR11='10',
+}
export enum Regularisation{
L1='l1',
L2='l2'
}
+export enum RegularisationRate{
+ RR1='0',
+ RR2='0.001',
+ RR3='0.003',
+ RR4='0.01',
+ RR5='0.03',
+ RR6='0.1',
+ RR7='0.3',
+ RR8='1',
+ RR9='3',
+ RR10='10',
+}
export enum ProblemType {
Regression = 'regresioni',
BinaryClassification = 'binarni-klasifikacioni',