aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_data
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_data')
-rw-r--r--frontend/src/app/_data/Dataset.ts3
-rw-r--r--frontend/src/app/_data/Model.ts19
-rw-r--r--frontend/src/app/_data/Predictor.ts19
3 files changed, 26 insertions, 15 deletions
diff --git a/frontend/src/app/_data/Dataset.ts b/frontend/src/app/_data/Dataset.ts
index a962fe6b..c8d5771a 100644
--- a/frontend/src/app/_data/Dataset.ts
+++ b/frontend/src/app/_data/Dataset.ts
@@ -4,7 +4,7 @@ export default class Dataset extends FolderFile {
constructor(
name: string = 'Novi izvor podataka',
public description: string = '',
- public fileId?: number,
+ public fileId?: string,
public extension: string = '.csv',
public isPublic: boolean = false,
public accessibleByLink: boolean = false,
@@ -17,6 +17,7 @@ export default class Dataset extends FolderFile {
public rowCount: number = 0,
public nullRows: number = 0,
public nullCols: number = 0,
+ public isPreProcess : Boolean = false,
public cMatrix: number[][] = []
) {
super(name, dateCreated, lastUpdated);
diff --git a/frontend/src/app/_data/Model.ts b/frontend/src/app/_data/Model.ts
index cc25c91b..898805d3 100644
--- a/frontend/src/app/_data/Model.ts
+++ b/frontend/src/app/_data/Model.ts
@@ -2,6 +2,7 @@ import { NgIf } from "@angular/common";
import { FolderFile } from "./FolderFile";
export default class Model extends FolderFile {
+ public lossFunction: LossFunction;
constructor(
name: string = 'Novi model',
public description: string = '',
@@ -12,7 +13,6 @@ export default class Model extends FolderFile {
// Neural net training settings
public type: ProblemType = ProblemType.Regression,
public optimizer: Optimizer = Optimizer.Adam,
- public lossFunction: LossFunction = LossFunctionRegression[0],
public inputNeurons: number = 1,
public hiddenLayers: number = 1,
public batchSize: BatchSize = BatchSize.O3,
@@ -21,18 +21,19 @@ export default class Model extends FolderFile {
public metrics: string[] = [], // TODO add to add-model form
public epochs: number = 5, // TODO add to add-model form
public inputColNum: number = 5,
- public learningRate: LearningRate = LearningRate.LR1,
+ public learningRate: LearningRate = LearningRate.LR3,
public layers: Layer[] = [new Layer()],
// Test set settings
public randomOrder: boolean = true,
public randomTestSet: boolean = true,
public randomTestSetDistribution: number = 0.1, //0.1-0.9 (10% - 90%) JESTE OVDE ZAKUCANO 10, AL POSLATO JE KAO 0.1 BACK-U
-
+ public validationSize: number = 0.1,
public isPublic: boolean = false,
public accessibleByLink: boolean = false
) {
super(name, dateCreated, lastUpdated);
+ this.lossFunction = (this.type == ProblemType.Regression ? LossFunctionRegression[0] : (this.type == ProblemType.BinaryClassification ? LossFunctionBinaryClassification[0] : LossFunctionMultiClassification[0]));
}
}
export class Layer {
@@ -45,8 +46,8 @@ export class Layer {
) { }
}
export enum LearningRate {
- LR1 = '0.00001',
- LR2 = '0.0001',
+ // LR1 = '0.00001',
+ // LR2 = '0.0001',
LR3 = '0.001',
LR4 = '0.003',
LR5 = '0.01',
@@ -117,10 +118,10 @@ export enum ActivationFunctionOutputLayer
export enum LossFunction {
// binary classification loss functions
BinaryCrossEntropy = 'binary_crossentropy',
- SquaredHingeLoss = 'squared_hinge_loss',
- HingeLoss = 'hinge_loss',
+ SquaredHingeLoss = 'squared_hinge',
+ HingeLoss = 'hinge',
// multi-class classification loss functions
- CategoricalCrossEntropy = 'categorical_crossentropy',
+ // CategoricalCrossEntropy = 'categorical_crossentropy',
SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy',
KLDivergence = 'kullback_leibler_divergence',
@@ -134,7 +135,7 @@ export enum LossFunction {
export const LossFunctionRegression = [LossFunction.MeanAbsoluteError, LossFunction.MeanSquaredError, LossFunction.MeanSquaredLogarithmicError]
export const LossFunctionBinaryClassification = [LossFunction.BinaryCrossEntropy, LossFunction.SquaredHingeLoss, LossFunction.HingeLoss]
-export const LossFunctionMultiClassification = [LossFunction.CategoricalCrossEntropy, LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence]
+export const LossFunctionMultiClassification = [/*LossFunction.CategoricalCrossEntropy,*/ LossFunction.SparseCategoricalCrossEntropy, LossFunction.KLDivergence]
export enum Optimizer {
Adam = 'Adam',
diff --git a/frontend/src/app/_data/Predictor.ts b/frontend/src/app/_data/Predictor.ts
index 55d610ed..8de4cd17 100644
--- a/frontend/src/app/_data/Predictor.ts
+++ b/frontend/src/app/_data/Predictor.ts
@@ -3,19 +3,28 @@ import { FolderFile } from "./FolderFile";
export default class Predictor extends FolderFile {
constructor(
name: string = 'Novi prediktor',
- public description: string = '',
+
+ public uploaderId: string = '',
public inputs: string[] = [],
public output: string = '',
public isPublic: boolean = false,
public accessibleByLink: boolean = false,
dateCreated: Date = new Date(),
- lastUpdated: Date = new Date(),
- public uploaderId: string = '',
- //public finalMetrics: Metric[] = []
public experimentId: string = "",
public modelId: string = "",
+ public h5FileId: string = "",
+ public metricsLoss:number[]=[],
+ public metricsValLoss:number []=[],
+ public metricsAcc:number[]=[],
+ public metricsValAcc: number[]=[],
+ public metricsMae :number []=[],
+ public metricsValMae :number []=[],
+ public metricsMse : number[]=[],
+ public metricsValMse : number[]=[],
+ //public metrics: Metric[] = [],
+ //public finalMetrics: Metric[] = []
) {
- super(name, dateCreated, lastUpdated);
+ super(name, dateCreated, dateCreated);
}
}