aboutsummaryrefslogtreecommitdiff
path: root/frontend/src/app/_elements/form-model/form-model.component.ts
diff options
context:
space:
mode:
Diffstat (limited to 'frontend/src/app/_elements/form-model/form-model.component.ts')
-rw-r--r--frontend/src/app/_elements/form-model/form-model.component.ts55
1 files changed, 27 insertions, 28 deletions
diff --git a/frontend/src/app/_elements/form-model/form-model.component.ts b/frontend/src/app/_elements/form-model/form-model.component.ts
index c8822992..c9e2fc8e 100644
--- a/frontend/src/app/_elements/form-model/form-model.component.ts
+++ b/frontend/src/app/_elements/form-model/form-model.component.ts
@@ -15,13 +15,13 @@ export class FormModelComponent implements AfterViewInit {
@ViewChild(GraphComponent) graph!: GraphComponent;
@Input() forExperiment!: Experiment;
@Output() selectedModelChangeEvent = new EventEmitter<Model>();
- @Input() hideProblemType:boolean;
- @Input() forProblemType:ProblemType;
+ @Input() hideProblemType: boolean;
+ @Input() forProblemType: ProblemType;
testSetDistribution: number = 70;
- validationSize:number=15;
- constructor() {
- this.hideProblemType=false;
- this.forProblemType=ProblemType.BinaryClassification;
+ validationSize: number = 15;
+ constructor() {
+ this.hideProblemType = false;
+ this.forProblemType = ProblemType.BinaryClassification;
}
ngAfterViewInit(): void { }
@@ -59,10 +59,15 @@ export class FormModelComponent implements AfterViewInit {
term: string = "";
selectedMetrics = [];
- lossFunction: any = LossFunction;
+ lossFunctions: { [index: string]: LossFunction[] } = {
+ [ProblemType.Regression]: LossFunctionRegression,
+ [ProblemType.BinaryClassification]: LossFunctionBinaryClassification,
+ [ProblemType.MultiClassification]: LossFunctionMultiClassification
+ };
loadModel(model: Model) {
this.newModel = model;
+ this.forProblemType = model.type;
}
updateGraph() {
@@ -77,6 +82,7 @@ export class FormModelComponent implements AfterViewInit {
this.updateGraph();
}
}
+
addLayer() {
if (this.newModel.hiddenLayers < 128) {
this.newModel.layers.push(new Layer(this.newModel.layers.length, this.selectedActivation, this.selectedNumberOfNeurons, this.selectedRegularisation, this.selectedRegularisationRate));
@@ -84,8 +90,8 @@ export class FormModelComponent implements AfterViewInit {
this.newModel.hiddenLayers += 1;
this.updateGraph();
}
-
}
+
numSequence(n: number): Array<number> {
return Array(n);
}
@@ -96,12 +102,14 @@ export class FormModelComponent implements AfterViewInit {
this.updateGraph();
}
}
+
addNeuron(index: number) {
if (this.newModel.layers[index].neurons < 18) {
this.newModel.layers[index].neurons += 1;
this.updateGraph();
}
}
+
selectedActivation: ActivationFunction = ActivationFunction.Sigmoid;
selectedRegularisationRate: RegularisationRate = RegularisationRate.RR1;
selectedRegularisation: Regularisation = Regularisation.L1;
@@ -131,24 +139,15 @@ export class FormModelComponent implements AfterViewInit {
updateTestSet(event: MatSliderChange) {
this.testSetDistribution = event.value!;
}
- filterLossFunction() {
- if(this.newModel.type==ProblemType.Regression){
- this.lossFunction = LossFunctionRegression;
- this.newModel.lossFunction=LossFunction.MeanSquaredError;
- }
- else if(this.newModel.type==ProblemType.BinaryClassification){
- this.lossFunction= LossFunctionBinaryClassification;
- this.newModel.lossFunction=LossFunction.BinaryCrossEntropy;
- }
- else if(this.newModel.type==ProblemType.MultiClassification){
- this.lossFunction = LossFunctionMultiClassification;
- this.newModel.lossFunction=LossFunction.SparseCategoricalCrossEntropy;
- }
-
-}
-getInputColumns() {
- return this.forExperiment.inputColumns.filter(x => x != this.forExperiment.outputColumn);
+
+ getInputColumns() {
+ if (this.forExperiment)
+ return this.forExperiment.inputColumns.filter(x => x != this.forExperiment.outputColumn);
+ else
+ return ['Nisu odabrane ulazne kolone.']
+ }
+
+ updateValidation(event: MatSliderChange) {
+ this.validationSize = event.value!;
+ }
}
-updateValidation(event: MatSliderChange) {
- this.validationSize = event.value!;
-}}